K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2017

- Vì 1945 chia hết cho 9

1494 chia hết cho 2

\(\Rightarrow\)1494x1495x1496 chia hết cho 2x9 = 18

- Vì 1494 chia hết cho 9, 1495 chia hết cho 5, 1496 chia hết cho 11

\(\Rightarrow\)1494x1495x1496 chia hết cho 5x9x11 = 495

23 tháng 10 2017

A = 1494 . 1945 . 1496

Ta có 18 = 9 . 2

A = 166 . 9 . 1945 . 1496

=> A chia hết cho 9 ( 1 )

A gồm 2 số chẵn là 1494 và 1496 

=> A chia hết cho 2 ( 2 )

Từ ( 1 ) và ( 2 ) ta suy ra A chia hết cho 18

Ta có 495 = 5 . 9 . 11

Ta không cần chứng minh chia hết cho 9 nữa vì ở trên đã có . ( 1 )

Trong A có 1 số có tận cùng là 5

=> A chia hết cho 5 ( 2 )

A = 1494 . 1945 . 136 . 11

=> A chia hết cho 11 ( 3 )

Từ ( 1 ) ; ( 2 ) và ( 3 ) ta suy ra A chia hết cho 495 

23 tháng 10 2017

Co x+2 chia het cho x+2

    3(x+2)=3x+6 chia het cho x+2

   Ma 3x+5 chia het cho x+2

\(\Rightarrow\)3x+6-3x-5=1 chia het cho x+2

 x+2=1 x=-1

x+2=-1 x=-3

23 tháng 10 2017

mk chịu @gmai.com

7 tháng 10 2024

      Đây là toán nâng cao chuyên đề chia hết, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp đánh giá như sau:

         Bài 1: CM A = n2 + n + 6 ⋮ 2 

+ TH1: Nếu n là số chẵn ta có: n = 2k (k \(\in\) N)

  Khi đó: A = (2k)2 + 2k + 6 

              A = 4k2 + 2k + 6

             A =  2.(2k2 + k + 3)  ⋮ 2

+ TH2: Nếu n là số lẻ ta có: n2; n đều là số lẻ

         Suy ra n2 + n là chẵn vì tổng của hai số lẻ luôn là số chẵn

            ⇒  A = n2 + n + 6 là số chẵn 

                A = n2 + n + 6 ⋮ 2

+ Từ các lập luận trên ta có: A = n2 + n + 6 ⋮ 2 \(\forall\) n \(\in\) N

       

 

           

             

 

 

7 tháng 10 2024

Đây là dạng toán nâng cao chuyên đề tính chất chia hết của một tổng, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp quy nạp toán học như sau:

Bài 2: CM:  A = n3 + 5n ⋮6 ∀ \(n\) \(\in\) N

          Với n = 1 ta có: A = 13 + 1.5 

                A = 1 + 5 = 6 ⋮ 6

          Giả sử A đúng với n = k (k \(\in\) N)

          Khi đó ta có: A  = k3 + 5k ⋮ 6 \(\forall\) k \(\in\) N (1)

          Ta cần chứng minh A = n3 + 5n ⋮ 6 với n = k  + 1

          Tức là ta cần chứng minh: A = (k + 1)3 + 5.(k + 1) ⋮ 6

Thật vậy với n = k + 1 ta có: 

       A = (k  + 1)3 + 5(k + 1) 

      A = (k  +1).(k  + 1)(k + 1) + 5.(k  +1)

     A = (k2 + k + k  +1).(k + 1) + 5k  +5

     A =  [k2 + (k + k) + 1].(k + 1) + 5k + 5

    A = [k2 + 2k + 1].(k + 1) + 5k + 5

   A = k3 + k2 + 2k2 + 2k + k  +1  +5k  +5

   A  = (k3 + 5k) + (k2 + 2k2) + (2k + k) + (1 + 5) 

    A = (k3 + 5k) + 3k2 + 3k + 6

   A = (k3 + 5k) + 3k(k +1) + 6

   k.(k  +1) là tích của hai số liên tiếp nên luôn chia hết cho 2

 ⇒ 3.k.(k + 1) ⋮ 6 (2)

     6 ⋮ 6 (3)

Kết hợp (1); (2) và (3) ta có:

    A = (k3 + 5k) + 3k(k + 1) + 6 ⋮ 6 ∀ k \(\in\) N

Vậy A = n3 + 5n ⋮ 6 \(\forall\) n \(\in\) N (đpcm) 

 

 

      

 

 

 

                  

           

          

 

                 

 

 

 

5 tháng 2 2016

a, a2 + ab + 2a + 2b

= a(a + b) + 2(a + b)

= (2 + a)(a + b) chia hết cho a + b

b, Gọi 3 số nguyên liên tiếp là a; a + 1; a + 2

Ta có:

a + (a + 1) + (a + 2) = 3a + 3 = 3(a + 1) chia hết cho 3

5 tháng 2 2016

a)

=a^2+a.b+2a+2b

=a.a+a.b+2a+2b

=a(a+b)+2(a+b)

=(a+2).(a+b)

vì (a+b)chia hết cho (a+b)

=>a+2chia hết cho a+b

=>tổng (2+a)(a+b)=(a^2+a.b+2a+2b)chia hết cho (a+b)

b)

gọi 3 số nguyên liên tiếp là a;a+1;a+2

=>tổng là a+(a+1)+(a+2)

=a.a.a+3

=> tổng 3 số liên tiếp thì chia hết cho 3

29 tháng 11 2016

1.

\(A=7+7^2+7^3+...+7^{78}\)

\(=\left(7+7^2\right)+\left(7^3+7^4\right)+...+\left(7^{77}+7^{78}\right)\)

\(=7\left(1+7\right)+7^3\left(1+7\right)+...+7^{77}\left(1+7\right)\)

\(=7\cdot8+7^3\cdot8+...+7^{77}\cdot8\)

\(=\left(7+7^3+...+7^{77}\right)\cdot8\) chia hết cho 8

Vậy A chia hết cho 8 (đpcm)

 

 

29 tháng 11 2016

\(A=3+3^2+3^3+...+3^{155}\)

\(=\left(3+3^2+3^3+3^4+3^5\right)+...+\left(3^{151}+3^{152}+3^{153}+3^{154}+3^{155}\right)\)

\(=3\left(1+3+3^2+3^3+3^4\right)+...+3^{151}\left(1+3+3^2+3^3+3^4\right)\)

\(=\left(3+...+3^{151}\right)\cdot121\) chia hết cho 121

Vậy A chia hết cho 121 (đpcm)

18 tháng 10 2015

1033+8=10...000(33 chữ số 0)+8=10...008(32 chữ số 0) có:

+) Chữ số tận cùng 8 chia hết cho 2

+) Tổng các chữ số: 1+0+...+0+0+8=1+8=9 chia hết cho 9

Mà 2 & 9 nguyên tố cùng nhau

=> 1033+8 chia hết cho 18(2.9=18)

=> đpcm

18 tháng 10 2015

Minh Hiền : viết thế này nhanh hơn . (2;9) = 1

15 tháng 11 2014

d) Ta có: n + 6 chia hết cho n+1

              n+1 chia hết cho n+1

=> [(n+6) - (n+1)] chia hết cho n+1

=> (n+6 - n - 1) chia hết cho n + 1

=> 5 chia hết cho n+1

=> n+1 thuộc { 1; 5 }

Nếu n+1 = 1 thì n = 1-1=0

Nếu n+1=5 thì n= 5-1=4.

Vậy n thuộc {0;4}

15 tháng 11 2014

e) Ta có: 2n+3 chia hết cho n-2 (1)

              n-2 chia hết cho n-2 => 2(n-2) chia hết cho n-2 => 2n - 4 chia hết cho n-2 (2)

Từ (1) và (2) => [(2n+3) - (2n-4)] chia hết cho n-2

=> (2n+3 - 2n +4) chia hết cho n-2

=> 7 chia hết cho n-2

Sau đó xét các trường hợp tương tự như phần d.