Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng công thức \(1+2+...+n=\frac{n\left(n+1\right)}{2}\)ta có:
\(E=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{200}\left(1+2+...+200\right)\)
\(=1+\frac{1}{2}.\frac{2.3}{2}+\frac{1}{3}.\frac{3.4}{2}+....+\frac{1}{200}.\frac{200.201}{2}\)
\(=1+\frac{3}{2}+\frac{4}{2}+....+\frac{201}{2}\)
\(=\frac{2+3+4+...+201}{2}=\frac{\frac{201.202}{2}-1}{2}=10150\)
a)
A = 2 + 22 + 23 + 24 + ... + 2200
2A = 22 + 23 + 24 + 25 + ... + 2200
2A - A = A = 2200 - 2
b) chịu
c)
C = 4 + 42 + 43 + 44 +... + 4100
4C = 42 + 43 + 44 + 45 + ... + 4101
4C - C = 3C = 4101 - 4
\(\Rightarrow\) C = \(\frac{4^{101}-4}{3}\)
d)
D = 5 + 52 + 53 + ... + 5100
5D = 52 + 53 + 54 + ... + 5101
5D - D = 4D = 5101 - 5
\(\Rightarrow\)D = \(\frac{5^{101}-5}{4}\)
A = ( 200 + 1 ) x 200 : 2 = 20100
B = ( 200 + 2 ) x 100 : 2 = 10100
C = ( 201 + 1 ) x 101 : 2 = 10201
D = ( 201 + 3 ) x 67 : 2 = 6834
\(E=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+\frac{1}{4}\left(1+2+3+4\right)+...+\frac{1}{200}\left(1+2+...+200\right)\)
\(E=1+\frac{1}{2}.\frac{\left(1+2\right).2}{2}+\frac{1}{3}.\frac{\left(1+3\right).3}{2}+...+\frac{1}{200}.\frac{\left(1+200\right).200}{2}\)
\(E=1+\frac{1+2}{2}+\frac{1+3}{2}+...+\frac{1+200}{2}\)
\(E=1+\frac{3}{2}+\frac{4}{2}+...+\frac{201}{2}\)
\(E=\frac{2+3+4+...+201}{2}=\frac{\left(201+2\right).200:2}{2}\)
\(E=10150\)
) 1 - 2 - 3 + 4 + 5 - 6 - 7 + 8 + ... + 97 - 98 - 99 + 100 ( có 100 số; 100 chia hết cho 4)
= (1 - 2 - 3 + 4) + (5 - 6 - 7 + 8) + ... + (97 - 98 - 99 + 100)
= 0 + 0 + ... + 0
= 0
a = S
u1 = 1
q = 4
n = 200 ?