K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2018

\(A=\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)

\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(A=\frac{1}{2}-\frac{1}{100}\)

\(A=\frac{49}{100}\)

24 tháng 12 2018

\(A=\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)

\(A=\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(A=\frac{1}{2}-\frac{1}{100}=\frac{49}{100}\)

24 tháng 12 2018

\(A=\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

ta có: \(\frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)

\(\frac{1}{3.4}=\frac{1}{3}-\frac{1}{4}\)

...

\(\frac{1}{99.100}=\frac{1}{99}-\frac{1}{100}\)

Vậy \(A=\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)

\(=\frac{1}{2}-\frac{1}{100}\)

\(=\frac{50}{100}-\frac{1}{100}=\frac{49}{100}\)

vậy A = 49/100

10 tháng 4 2016

Ai tích cho toi thi h lai cho

10 tháng 4 2016

Ta có: 1/2-1/3+1/3-1/4+1/4-1/5+...+1/99-1/100
         = 1/2-1/100
         = 50/100-1/100
         = 49/100

16 tháng 4 2016

A=1-1/2+1/2-1/3+1/3-1/4+.........+1/99-1/100

A=1-1/100

A=99/100

ai k mk      mk k lai 

16 tháng 4 2016

A=1-1/100

A=99/100

Nha bạn       

14 tháng 5 2015

\(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}\)

\(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=\frac{1}{2}-\frac{1}{100}=\frac{49}{100}\)

8 tháng 4 2017

\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}+\frac{1}{99.100}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(A=1-\frac{1}{100}=\frac{99}{100}\)

vì \(\frac{99}{100}< 1\)

nên \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}< 1\)

8 tháng 4 2017

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)

\(A=1-\frac{1}{100}< 1\)

Vậy A<1

9 tháng 5 2017

\(A=\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{99\cdot100}\)

\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-...+\frac{1}{99}-\frac{1}{100}\)

\(A=\frac{1}{2}-\frac{1}{100}\)

\(\frac{1}{2}-\frac{1}{100}< \frac{1}{2}\)

\(\Rightarrow A< \frac{1}{2}\)

9 tháng 5 2017

\(A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)

\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)

\(A=\frac{1}{2}-\frac{1}{100}\)

\(\Leftrightarrow A< \frac{1}{2}\)

4 tháng 11 2015

  A=abc+bca+cab= (1000a+10b+c) +(1000b+10c+a)+(1000c+10a+b)= 1011*(a+b+c) =3*337*(a+b+c) 

Do 3 & 337 là số nguyên tố, để A là số chính phương thì tổng a+b+c phải bằng 3*337 hoặc là (3*337)^(2n+1) 

Tuy nhiên do a,b,c<=9 => a+b+c<=27 nên không thể nào thỏa mãn 

Vậy không tồn tại số chính phương A

11 tháng 3 2022

\(A=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}=\dfrac{1}{2}-\dfrac{1}{100}=\dfrac{49}{100}\)

6 tháng 8 2021

\(A=\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)

\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}=\dfrac{1}{2}-\dfrac{1}{100}=\dfrac{49}{100}\)

6 tháng 8 2021

`A=1/(2.3) + 1/(3.4) +........ +1/(99.100)`

`=1/2-1/3+1/3-1/4+......+1/99-1/100`

`=1/2-1/100`

`=49/100`