Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3A=1.2.3+2.3.3+3.4.3+...+19.20.3
3A=1.2.3+2.3.(4-1)+3.4.(5-2)+...+19.20.(21-18)
3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+19.20.21-18.19.20
3A=19.20.21
=> \(A=\frac{19.20.21}{3}=2660\)
mk dùng cách của lớp 8 nha bạn ;
ta có công thức xích ma như sau x(x+1)
nhập vào xích ma ta có kết quả 2660
\(A=\frac{9}{1.2}+\frac{9}{2.3}+\frac{9}{3.4}+...+\frac{9}{2019.2020}\)
\(=9\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2019.2020}\right)\)
\(=9\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}\right)\)
\(=9\left(1-\frac{1}{2020}\right)\)
\(=9.\frac{2019}{2020}\)
\(=\frac{18171}{2020}\)
\(A=\frac{9}{1.2}+\frac{9}{2.3}+\frac{9}{3.4}+...+\frac{9}{2019.2020}\)
\(A=9.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2019.2020}\right)\)
\(A=9\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}\right)\)
\(A=9\left(1-\frac{1}{2020}\right)=\frac{9.2019}{2020}=\frac{18171}{2020}\)
...
A = 1.2 + 2.3 + 3.4 + 4.5 + ... + 99.100 + 100.101
3.A = 1.2.3 + 2.3.3 +3.4.3 + ... + 100.101.3
3A= 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 100.101.(102 - 99)
3A = 1.2.3 + 2.3.4 - 1.2.3 + 2.3.4 -3.4.5 + ... +99.100.101 -100.101.102
3A = 99.100.101
A = 99.100.101 : 3
A = 33.100.101
Vậy A = 33. 100 .101 (Tự tính)
Ta có:
A-B =1.2+2.3+3.4+...+100.101-
(1^2+2^2+3^2+4^2+...+100^2)
= 1.2+2.3+3.4+...+100.101-
Đặt B = 1.2+2.3 +.......+99.100+100.101
3B= 1.2.3+2.3.4+3.4.3 +......+ 99.100.3 + 100.101.3
3B= 1.2. (3 - 0) + 2.3.(4 - 1) +3.4. (5 - 2)....... . 99.100. (101 - 98) . 100.101.(102 - 99)
3B = (1.2.3 + 2.3.4 + 3.4.5 +...... + 99.100.101 + 100.101.102) - (0.1.2 + 1.2.3 + 2.3.4 +.......+ 98.99.100.99.100.101)
3B = 100.101.102 - 0.1.2
3B = 1030200 - 0
3B= 1030200
B = 1030200 : 3
B = 343400
Đặt S= 1.2 + 2.3 + 3.4 + ...+ 99.100
3S = 1.2.3+2.3.3+3.4.3+...+98.99.3+99.100.3
3S= 1.2.3+2.3(4-1)+3.4(5-2)+...+98.99(100-97)+99.100(101-98)
3S= 1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...-97.98.99+99.100.101-98.99.100
3S = 99.100.101 3S = 3.33.100.101
S=33.100.101= 333300
Nhớ **** cho mjk với nhak!!!!!
Đặt S= 1.2 + 2.3 + 3.4 + ...+ 99.100
3S = 1.2.3+2.3.3+3.4.3+...+98.99.3+99.100.3
3S= 1.2.3+2.3(4-1)+3.4(5-2)+...+98.99(100-97)+99.100(101-98)
3S= 1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...-97.98.99+99.100.101-98.99.100
3S = 99.100.101 3S = 3.33.100.101
S=33.100.101= 333300
Nhớ **** cko mjk nhak!!
ĐẶT S = 1.2 + 2.3 +3.4 +........ + 100.101
3S = 1 . 2 .3 + 2 . 3 . 3+ 3.4.3 + ....... + 99 . 100 . 3
3S= 1 . 2 . 3 + 2. 3 . ( 4-1 ) + ......... + 99 . 100 . (101 -98 )
3S= 1 . 2 . 3 + 2 . 3 . 4 - 1 . 2 . 3+ 3 . 4 . 5 - 2 . 3 . 4 + ...... + 99 . 100 . 101 - 98 . 99 . 100
3S = 99 . 100 . 101
3S = 3 .33 . 100 . 101
S= 33 . 100 . 101 = 333300
Đặt A = 1.2+2.3+3.4+...+100.101
3A = 1.2.3+2.3.3+3.4.3+...+100.101.3
3A= 1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+...+100.101.(102-99)
3A= 1.2.3-0.1.2+2.3.4-1.2.3+...+100.101.102-99.100.101
3A= (1.2.3-1.2.3)+(2.3.4-2.3.4)+...+(99.100.101-99.100.101)+(100.101.102-0.1.2)
3A= 0+0+...+0+(100.101.102-0.1.2)
3A= 100.101.102-0.1.2
3A= 100.101.102
A= (100.101.102):3
A= 1030200:3
A= 343400
Đặt A = 1.2 + 2.3 + 3.4 + 4.5 + ... + 99.100 + 100.101
3A = 1.2.3 + 2.3.3 + 3.4.3 + 4.5.3 + ... + 99.100.3 + 100.101.3
3A = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 99.100.(101 - 98) + 100.101.(102 - 99)
3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 99.100.101 - 98.99.100 + 100.101.102 - 99.100.101
3A = 100.101.102
3A = 1030200
A = 343400
\(A = 1 . 2 + 2 . 3 + 3 . 4 + ... + 100 . 101\)
\(3A=1\cdot2\cdot3+2\cdot3\cdot\left(4-1\right)+...+100\cdot101\cdot\left(102-99\right)\)
\(3A=1\cdot2\cdot3+2\cdot3\cdot4-1\cdot2\cdot3+...+100\cdot101\cdot102-99\cdot100\cdot101\)
\(3A=100\cdot101\cdot102\)
\(3A=1030200\)
\(A=1030200\text{ : }3\)
\(A=343400\)
\(A = 1 . 2 + 2 . 3 + 3 . 4 + ... + 100 . 101\)
\(3A=1\cdot2\cdot3+2\cdot3\cdot\left(4-1\right)+...+100\cdot101\cdot\left(102-99\right)\)
\(3A=1\cdot2\cdot3+2\cdot3\cdot4-1\cdot2\cdot3+...+100\cdot101\cdot102-99\cdot100\cdot101\)
\(3A=100\cdot101\cdot102\)
\(3A=1030200\)
\(A=1030200\text{ : }3\)
\(A=343400\)