Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)A=3+32+33+...+32008
A=(3+32)+(33+34)+...+(32007+32008)
A=3(1+3)+33(1+3)+...+32007(1+3)
A=3.4+33.4+...+32007.4
A=4(3+....+32007) chia hết cho 4
1, A=(3+3^2)+(3^3+3^4)+...+(3^2007+3^2008)
A= 3.4+3^3.4+...+3^2007 .4
A= 4(3+3^3+...+3^2008)=>ĐPCM
2, theo đề bài :a+b chia hết cho 2
ta có : a+3b=a+b+2b
vì a+b chia hết cho 2 mà 2b chia hết cho 2=> ĐPCM
A=[(-1)+(-3)+....+(-2009)]+(2+4+...+2010)
A= {[-2009+(-1)].[(2009-1):2+1]}+{(2010+2).[(2010-2):2+1]}
A= {-2010.[(2009-1):2+1]}+[(2010+2).1005]
Vì có -2010 và 1005 chia hết cho 5 nên 2 tích nhỏ trên chia hết cho 5 suy ra A là tổng của 2 số chia hết cho 5 nên cũng chia hết cho 5.
A = [(-1) + 2] + [(-3) +4] + ... + [(-2009) + 2010]
= 1 + 1 + 1 + ... + 1 (1005 số 1)
= 1005 chia hết cho 5
Xét B=1+1/2+1/3+...+1/2008=(1+1/2008)+(1/2+1/2007)+...+(1/1004+1/1005)
=2009/1.2008+2009/2.2007+...+2009/1004.1005=2009.(1/1.2008+1/2.2007+...+1/1004.1005)
Quy đồng mẫu số các phân số trong ngoặc:Gọi k1 là thườ số phụ của 1/1.2008;...k1004 là thừa số phụ của 1/1004.1005
=>B=2009.k1+k2+...+k1004/1.2.3...2007.2008
=>1.2.3...2007.2008.2009.k1+k2+...+k1004/1.2.3...2007.2008=2009.(k1+k2+...+k1004)
Tổng k1+k2+...+k1004 là số tự nhiên =>A chia hết cho2009
Cho một đúng nha
Ta có: \(A=1\cdot2\cdot3\cdot...\cdot2007\cdot2008\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2008}\right)\)
\(A=2008!\left[\left(1+\frac{1}{2008}\right)+\left(\frac{1}{2}+\frac{1}{2007}\right)+...+\left(\frac{1}{1004}+\frac{1}{1005}\right)\right]\)
\(A=2008!\left(\frac{2009}{2008}+\frac{2009}{2\cdot2007}+...+\frac{2009}{1004\cdot1005}\right)\)
\(A=\frac{2009!}{2008}+\frac{2009!}{2\cdot2007}+...+\frac{2009!}{1004\cdot1005}\)
\(A=2009\left(2\cdot3\cdot...\cdot2017+3\cdot4\cdot...\cdot2016\cdot2018+2\cdot3\cdot...\cdot1003\cdot1006\cdot...\cdot2018\right)\)
chia hết cho 2019
=> đpcm
có : Q = [ 2 + 2^2 ] + [ 2^3 +2^4] + ... + [2^9 + 2^10]
Q = 2 [1+2] +2^3[1 +2]+ ...+ 2^9 [1+2]
Q = 2 . 3+2^3 .3 +... + 2^9 .3
Q = 3. [ 2 + 2^3 +... + 2^9]
Vậy Q chia hết cho 3
A= 1 *2010/2
A= 1 * 1005
A= 1005
Số A có kết thúc là 5 nên A chia hết cho 5.
A = 1 + 2 + 22 + ... + 22007
= 1 + ( 2 + 22 + ... + 22007 )
Đặt B = 2 + 22 + ... + 22007
=> 2B = 2( 2 + 22 + ... + 22007 )
= 22 + 23 + ... + 22008
=> B = 2B - B
= 22 + 23 + ... + 22008 - ( 2 + 22 + ... + 22007 )
= 22 + 23 + ... + 22008 - 2 - 22 - ... - 22007
= 22008 - 2
=> B = 22008 - 2
Thế vào A ta được
A = 1 + 22008 - 2 = 22008 - 1
=> đpcm