K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2015

Ta có: 102013 + 8 = 1000...0008 (có 2012 chữ số 0)

=> chia hết cho 9 

Ta có : 8 chia hết cho 8 ; 102013 chia hết cho 22013 chia hết cho 23 = 8

Vậy A chia hết cho 8 và 9 

Vậy A chia hết cho 8 x 9 = 72       

 

14 tháng 5 2017

t​a có:abcdeg=​1000ab+100cd+eg=999ab+ab+99cd+cd+eg=(999ab+99cd)+(ab+cd+eg)

vì 999ab+99cd chia hết cho 11mà theo bài ra ab+cd+eg​chia hết cho 11.Suy ra abcdeg​chia hết cho 11

14 tháng 5 2017

a, Ta có: abcdeg = ab0000 + cd00 + eg

ab.10000 + cd.100 + eg

ab.9999 + ab + cd.99 + cd + eg

ab.11.909 + ab + cd.11.9 + cd + eg

= 11(ab.909 + cd.9) + (ab + cd + eg)

Vì 11(ab.909 + cd.9) \(⋮\)11 và (ab + cd + eg\(⋮\)11 nên abcdeg \(⋮\)11 (đpcm)

b, Ta có: 1028 + 8 = 100.......008 (27 c/s 0)

Vì 1028 + 8 có 3 chữ số tận cùng là 008 nên 1028 + 8 \(⋮\) 8 (1)

Lại có: 1 + 0 + 0 +....+ 0 + 0 + 8 = 9 \(⋮\)9 => 1028 + 8 \(⋮\) 9  (2)

Mà ƯCLN(8,9) = 1    (3)

Từ (1) ; (2) và (3) suy ra 1028 + 8 \(⋮\)72

9 tháng 4 2015

a) A có 3 chữ số tận cùng là 008 nên chia hết cho 8 (1)

A có tổng các chữ số là 9 nên chia hết cho 3 (2)

Từ (1) và (2) kết hợp với (3,8) = 1 => A chia hết cho 24

b) A có chữ số tận cùng là 8 nên không là số chính phương

 

10 tháng 4 2015

a) A có 3 chữ số tận cùng là 008 nên chia hết cho 8 (1)

A có tổng các chữ số là 9 nên chia hết cho 3 (2)

Từ (1) và (2) kết hợp với (3,8) = 1 => A chia hết cho 24

b) A có chữ số tận cùng là 8 nên không là số chính phương

 

7 tháng 10 2024

      Đây là toán nâng cao chuyên đề chia hết, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp đánh giá như sau:

         Bài 1: CM A = n2 + n + 6 ⋮ 2 

+ TH1: Nếu n là số chẵn ta có: n = 2k (k \(\in\) N)

  Khi đó: A = (2k)2 + 2k + 6 

              A = 4k2 + 2k + 6

             A =  2.(2k2 + k + 3)  ⋮ 2

+ TH2: Nếu n là số lẻ ta có: n2; n đều là số lẻ

         Suy ra n2 + n là chẵn vì tổng của hai số lẻ luôn là số chẵn

            ⇒  A = n2 + n + 6 là số chẵn 

                A = n2 + n + 6 ⋮ 2

+ Từ các lập luận trên ta có: A = n2 + n + 6 ⋮ 2 \(\forall\) n \(\in\) N

       

 

           

             

 

 

7 tháng 10 2024

Đây là dạng toán nâng cao chuyên đề tính chất chia hết của một tổng, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp quy nạp toán học như sau:

Bài 2: CM:  A = n3 + 5n ⋮6 ∀ \(n\) \(\in\) N

          Với n = 1 ta có: A = 13 + 1.5 

                A = 1 + 5 = 6 ⋮ 6

          Giả sử A đúng với n = k (k \(\in\) N)

          Khi đó ta có: A  = k3 + 5k ⋮ 6 \(\forall\) k \(\in\) N (1)

          Ta cần chứng minh A = n3 + 5n ⋮ 6 với n = k  + 1

          Tức là ta cần chứng minh: A = (k + 1)3 + 5.(k + 1) ⋮ 6

Thật vậy với n = k + 1 ta có: 

       A = (k  + 1)3 + 5(k + 1) 

      A = (k  +1).(k  + 1)(k + 1) + 5.(k  +1)

     A = (k2 + k + k  +1).(k + 1) + 5k  +5

     A =  [k2 + (k + k) + 1].(k + 1) + 5k + 5

    A = [k2 + 2k + 1].(k + 1) + 5k + 5

   A = k3 + k2 + 2k2 + 2k + k  +1  +5k  +5

   A  = (k3 + 5k) + (k2 + 2k2) + (2k + k) + (1 + 5) 

    A = (k3 + 5k) + 3k2 + 3k + 6

   A = (k3 + 5k) + 3k(k +1) + 6

   k.(k  +1) là tích của hai số liên tiếp nên luôn chia hết cho 2

 ⇒ 3.k.(k + 1) ⋮ 6 (2)

     6 ⋮ 6 (3)

Kết hợp (1); (2) và (3) ta có:

    A = (k3 + 5k) + 3k(k + 1) + 6 ⋮ 6 ∀ k \(\in\) N

Vậy A = n3 + 5n ⋮ 6 \(\forall\) n \(\in\) N (đpcm) 

 

 

      

 

 

 

                  

           

          

 

                 

 

 

 

10 tháng 4 2016

tra loi nhanh gium minh nha mai nop bai roi

16 tháng 1 2019

số 10^28+8 sẽ có tổng các chữ số là:

    1+0+0+0+0+0+0+..............+0+8=9(28 chữ số 0)

Số có tổng bằng 9 sẽ chia hết cho 9.

Số 10^28+8 có 3 chữ số tận cùng là 008 sẽ chia hết cho 8

Mà 72=8x9

Và 8 , 9 nguyên tố cùng nhau 

suy ra 10^28+8 chia hết cho 72(Đpcm)

Nhớ nhé