K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2020

\(A=\left(1-\frac{1}{1+2}\right)\left(1-\frac{1}{1+2+3}\right)...\left(1-\frac{1}{1+2+3+...+2016}\right)\)

\(=\left(1-\frac{1}{\frac{2.3}{2}}\right)\left(1-\frac{1}{\frac{3.4}{2}}\right)...\left(1-\frac{1}{\frac{2016.2017}{2}}\right)\)

\(=\left(1-\frac{2}{2.3}\right)\left(1-\frac{2}{3.4}\right)...\left(1-\frac{2}{2016.2017}\right)\)

\(=\frac{2.3-2}{2.3}.\frac{3.4-2}{3.4}...\frac{2016.2017-2}{2016.2017}\)

\(=\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}...\frac{2015.2018}{2016.2017}\)

\(=\frac{1}{3}.\frac{2018}{2016}=\frac{2018}{6048}\)

14 tháng 9 2016

\(A=\left(1+2\right).\frac{1}{2}+\left(1+2+3\right).\frac{1}{3}+...+\left(1+2+3+...+2016\right).\frac{1}{2016}\)

\(A=\left(1+2\right).2:2.\frac{1}{2}+\left(1+3\right).3:2.\frac{1}{3}+...+\left(1+2016\right).2016:2.\frac{1}{2016}\)

\(A=3:2+4:2+...+2017:2\)

\(A=3.\frac{1}{2}+4.\frac{1}{2}+...+2017.\frac{1}{2}\)

\(A=\frac{1}{2}.\left(3+4+...+2017\right)\)

\(A=\frac{1}{2}.\left(3+2017\right).2015:2\)

\(A=\frac{1}{2}.2020.2015.\frac{1}{2}\)

\(A=505.2015=1017575\)

12 tháng 2 2017

A=(0/1+2)(0/1+2+3+4)+...+(0/1+2+3+..+2016)

A=0

8 tháng 2 2016

A=3/1+3/3+3/6+...+3/2033136

A=2(3/2+3/6+3/12+...+3/4066272)

A=2.3.(1/1.2+1/2.3+...+1/2016.2017)

A=6.(1-1/2+1/2-1/3+...+1/2016-1/2017)

A=6.(1-1/2017)=336/2017

Vậy A=336/2017