K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2017

đề bài sải rồi

4 tháng 5 2017

\(A=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{2011.2013}\)

\(=\dfrac{1}{2}\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{2011.2013}\right)\)

\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2011}-\dfrac{1}{2013}\right)\)

\(=\dfrac{1}{2}\left(1-\dfrac{1}{2013}\right)\)

\(=\dfrac{1}{2}.\dfrac{2012}{2013}\)

\(=\dfrac{1006}{2013}\)

28 tháng 4 2019

\(A=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{2011.2013}\right)\)

\(A=\frac{1}{2}.\left(1-\frac{1}{2013}\right)\)

\(A=\frac{1}{2}.\frac{2012}{2013}\)

\(A=\frac{1006}{2013}\)

28 tháng 4 2019

\(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2011.2013}\)

\(A=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2011}-\frac{1}{2013}\right)\)

\(A=\frac{1}{2}.\left(1-\frac{1}{2013}\right)\)

\(A=\frac{1}{2}.\frac{2012}{2013}\)

\(A=\frac{1006}{2013}\)

11 tháng 5 2019

A = 1/1.3 + 1/3.5 + 1/5.7 + ... + 1/2011.2013

A = 1/2.(2/1.3 + 2/3.5 + 2/5.7 + ... + 2/2011.2013)

A = 1/2.(1 - 1/3  + 1/3 - 1/5 + 1/5 - 1/7 + ... + 1/2011 - 1/2013)

A = 1/2.(1 - 1/2013)

A = 1/2.2012/2013

A = 1006/2013

11 tháng 5 2019

\(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2011.2013}\)

\(2A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2011.2013}\)

\(2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2011}-\frac{1}{2013}\)

\(2A=1+\left(\frac{1}{3}-\frac{1}{3}\right)+\left(\frac{1}{5}-\frac{1}{5}\right)+\left(\frac{1}{7}-\frac{1}{7}\right)+...+\left(\frac{1}{2011}-\frac{1}{2011}\right)-\frac{1}{2013}\)

\(2A=1-\frac{1}{2013}\)

\(2A=\frac{2012}{2013}\)

\(A=\frac{2012}{2013}:2\)

\(A=\frac{1006}{2013}\)

~ Hok tốt ~

còn cần không bạn, mk làm cho

5 tháng 4 2018

A=1.3+3.5+5.7+...+99.101

6A=1.3(5+1)+3.5(7-1)+5.7(9-3)+7.9(11-5)+...+99.101(103-97)

= 1.3.5+1.3+3.5.7-3.5+5.7.9-3.5.7+7.9.11-5.7.9+...+99.101.103-97.99.101

=1.3+99.101.103

=> A= \(\frac{1.3+99.101.103}{6}\)

28 tháng 4 2019

\(S=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2011.2013}\)

\(\Rightarrow2S=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2011.2013}\)

\(\Rightarrow2S=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2011}-\frac{1}{2013}\)

\(\Rightarrow2S=1-\frac{1}{2013}\)

\(\Rightarrow2S=\frac{2012}{2013}\)

\(\Rightarrow S=\frac{2012}{2013}\div2\)

\(\Rightarrow S=\frac{1006}{2013}\)

28 tháng 4 2019

\(2S=\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+...+\frac{2}{2011\cdot2013}\)

\(2S=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2011}-\frac{1}{2013}\)

\(2S=1-\frac{1}{2013}\)

\(2S=\frac{2012}{2013}\)

\(S=\frac{2012}{2013}\div2=\frac{1006}{2013}\)

                                #Louis

4 tháng 5 2017

\(A=\dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+\dfrac{1}{5\cdot7}+...+\dfrac{1}{2011\cdot2013}\\ =\dfrac{1}{2}\cdot\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{2011\cdot2013}\right)\\ =\dfrac{1}{2}\cdot\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2011}-\dfrac{1}{2013}\right)\\ =\dfrac{1}{2}\cdot\left(1-\dfrac{1}{2013}\right)\\ =\dfrac{1}{2}\cdot\dfrac{2012}{2013}\\ =\dfrac{1006}{2013}\)

4 tháng 5 2017

Lời giải:

\(A=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{2011.2013}\)

\(\Rightarrow A=\dfrac{2.1}{2.1.3}+\dfrac{2.1}{2.3.5}+\dfrac{2.1}{2.5.7}+...+\dfrac{2.1}{2.2011.2013}\)

\(\Rightarrow A=\dfrac{1}{2}\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{2011.2013}\right)\)

\(\Rightarrow A=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2011}-\dfrac{1}{2013}\right)\)

\(\Rightarrow A=\dfrac{1}{2}\left(1-\dfrac{1}{2013}\right)\)

\(\Rightarrow A=\dfrac{1}{2}.\dfrac{2012}{2013}\)

\(\Rightarrow A=\dfrac{1006}{2013}\)

3 tháng 5 2018

x-1/2*(1/1-1/3)-(1/3-1/5)-...-1/97-1/99=5/6

x-1/2*(1-1/99)=5/6

x-1/2*98/99=5/6

x-49/59=5/6

x=5/6+49/59=263/198

\(A=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+.....+\dfrac{1}{2021.2023}\)

\(=\dfrac{1}{2}.\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+....+\dfrac{2}{2021.2023}\right)\)

\(=\dfrac{1}{2}.\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+....+\dfrac{1}{2021}-\dfrac{1}{2023}\right)\)

\(=\dfrac{1}{2}.\left(1-\dfrac{1}{2023}\right)=\dfrac{1}{2}.\dfrac{2022}{2023}=\dfrac{1011}{2023}\)

 

12 tháng 3 2023

Ta có A = \(\dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+\dfrac{1}{5\cdot7}+...+\dfrac{1}{2021\cdot2023}\)

            = \(\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{2021\cdot2023}\right)\)

            = \(\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2021}+\dfrac{1}{2023}\right)\)

            = \(\dfrac{1}{2}\left(1-\dfrac{1}{2023}\right)=\dfrac{1}{2}\cdot\dfrac{2022}{2023}=\dfrac{1011}{2023}\)
 

20 tháng 7 2016

\(\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+....+\frac{1}{99\cdot101}\)

\(=2\cdot\frac{1}{2}\cdot\left(\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{99\cdot101}\right)\)

\(=\frac{1}{2}\cdot\left(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{99\cdot101}\right)\)

\(=\frac{1}{2}\cdot\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(=\frac{1}{2} \cdot\left(1-\frac{1}{101}\right)\)

\(=\frac{1}{2}\cdot\frac{100}{101}\)

\(=\frac{50}{101}\)