Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{m+3}{m-2}=\frac{m-2+3}{m-2}=\frac{m-2}{m-2}+\frac{3}{m-2}=1+\frac{3}{m-2}\)
Để \(A\inℤ\)thì\(1+\frac{3}{m-2}\inℤ\)
\(\Leftrightarrow\frac{3}{m-2}\inℤ\)
Vì \(m\inℤ\Rightarrow m-2\inℤ\)
\(\Rightarrow m-2\inƯ\left(3\right)\)
Ta có bảng
m-2 | -3 | -1 | 1 | 3 |
m | -1 | 1 | 3 | 5 |
Vậy \(m\in\left\{-1;1;3;5\right\}\)
\(A=\frac{m+3}{m-2}=\frac{m-2+5}{m-2}=1+\frac{5}{m-2}\inℤ\)
\(\Leftrightarrow\frac{5}{m-2}\inℤ\Leftrightarrow5⋮m-2\)
\(\Rightarrow m-2\inƯ_{\left(5\right)}=\left\{-5,1,1,5\right\}\)
\(m-2=-5\Rightarrow m=-5+2=-3\)
\(m-2=-1\Rightarrow m=-1+2=1\)
\(m-2=1\Rightarrow m=1+2=3\)
\(m-2=5\Rightarrow m=5+2=7\)
Vậy: \(m\in\left\{-3,1,3,7\right\}\)
\(\frac{3}{a}=\frac{-4}{b}=\frac{7}{c}\Rightarrow\frac{a}{3}=\frac{b}{-4}=\frac{c}{7}\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{a}{3}=\frac{b}{-4}=\frac{c}{7}=\frac{a-b+c}{3-\left(-4\right)+7}=\frac{28}{14}=2\)
=> a = 2.3 = 6
b = (-4).3 = -12
c = 7.2 = 14
a) \(\frac{1}{3}+\frac{3}{5}-\frac{4}{3}\)
\(=\frac{14}{15}-\frac{4}{3}\)
\(=-\frac{6}{15}\)
k cho mik nha bn
a) \(\frac{1}{3}\)+ \(\frac{3}{5}\)- \(\frac{4}{3}\)
= \(\frac{14}{15}\)- \(\frac{4}{3}\)
= \(\frac{14}{15}\)- \(\frac{20}{15}\)
= \(\frac{-2}{5}\)
ta có
(a² + b²) / (c² + d²) = ab/cd
<=> (a² + b²)cd = ab(c² + d²)
<=> a²cd + b²cd = abc² + abd²
<=> a²cd - abc² - abd² + b²cd = 0
<=> ac(ad - bc) - bd(ad - bc) = 0
<=> (ac - bd)(ad - bc) = 0
<=> ac - bd = 0 hoặc ad - bc = 0
<=> ac = bd hoặc ad = bc
<=> a/b = d/c hoặc a/b = c/d (đpcm)
\(1;A=\frac{x+7}{x+1}=\frac{x+1+6}{x+1}=1+\frac{6}{x+1}\)
Vậy x + 1 là ước của 6 \(\Rightarrow x+1\in\left(1;-1;2;-2;3;-3;6;-6\right)\)
\(\Rightarrow x\in\left(0;-2;1;-3;2;-4;5;-7\right)\)
\(2;A=\frac{6x-2}{2x-3}=\frac{6x-9+7}{2x-3}=3+\frac{7}{2x-3}\)
Vậy 2x - 3 là ước của 7 \(\Rightarrow2x-3\in\left(1;-1;7;-7\right)\)
\(\Rightarrow x\in\left(2;1;5;-2\right)\)
\(3;A=\frac{4x-8}{2x+1}=\frac{4x+2-10}{2x+1}=2-\frac{10}{2x+1}\)
Vậy 2x + 1 là ước của 10 => .........
Có : a/a1 = b/b1 = c/c1
=> ax^2/a1x^2 = bx/b1x = c/c1
ÁP dụng tính chất dãy tỉ số bằng nhau ta có :
ax^2/a1x^2 = bx/b1x = c/c1 = ax^2+bx+c/a1x^2+b1x+c1
=> P = c/c1
=> Gía trị của biểu thức P ko phụ thuộc vào x
Tk mk nha
đặt \(\frac{a}{a_1}=\frac{b}{b_1}=\frac{c}{c_1}=k\)
\(\Rightarrow a=a_1k\text{ };\text{ }b=b_1k\text{ };\text{ }c=c_1k\)
Thay vào, ta được :
\(P=\frac{a_1kx^2+b_1kx+c_1k}{a_1x^2+b_1x+c_1}=\frac{k.\left(a_1x^2+b_1+c_1\right)}{a_1x^2+b_1x+c_1}=k\)
Vậy ....
a) Ta có \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}+1=\frac{c}{d}+1\Rightarrow\frac{a+b}{b}=\frac{c+d}{d}\left(\text{đpcm}\right)\)
b) Ta có : \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)(dãy tỉ số bằng nhau)
=> \(\frac{a+b}{c+d}=\frac{a-b}{c-d}\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\left(\text{đpcm}\right)\)
Bài làm:
a) \(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a}{b}+1=\frac{c}{d}+1\)
\(\Rightarrow\frac{a+b}{b}=\frac{c+d}{d}\)
b) Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
=> \(\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Ta có:
\(\frac{a+b}{a-b}=\frac{bk+b}{bk-b}=\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\)
\(\frac{c+d}{c-d}=\frac{dk+d}{dk-d}=\frac{d\left(k+1\right)}{d\left(k-1\right)}=\frac{k+1}{k-1}\)
=> \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)