Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\left(\frac{x}{\left(x+2\right)\left(x-2\right)}-\frac{2}{x-2}+\frac{1}{x+2}\right):\left(\frac{\left(x-2\right)\left(x+2\right)+10-x}{x+2}\right)\)
\(=\left(\frac{x-2\left(x+2\right)+\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}\right):\left(\frac{x^2-4+10-x}{x+2}\right)\)
Đổi 10-x lại thành\(10-x^2\) nha, mk thiếu! sorry!
\(=\left(\frac{x-2x-4+x-2}{\left(x+2\right)\left(x-2\right)}\right):\left(\frac{x^2-4+10-x^2}{x+2}\right)\)
\(=\frac{-6}{\left(x+2\right)\left(x-2\right)}.\frac{x+2}{6}\)
\(=\frac{-6\left(x+2\right)}{6\left(x-2\right)\left(x+2\right)}=-\frac{1}{x-2}\)
\(2x.\left(9-x\right)+\left(2x+5\right).\left(x+1\right)\)
\(=2x.9+2x.\left(-x\right)+2x.x+2x.1+5x+5.1\)
\(=18x-2x^2+2x^2+2x+5x+5\)
\(=25x+5\)
\(\left(x-3\right)^2+\left(x+3\right)^2+2.\left(3-x\right).\left(3+x\right)\)
\(=\left(x-3\right)^2-2.\left(x-3\right).\left(x+3\right)+\left(x+3\right)^2\)
\(=[\left(x-3\right)-\left(x+3\right)]^2\)
\(=\left(x-3-x-3\right)^2\)
\(=36\)
bài 1: <=> 3x2+3x-2x2-2x+x+1=0 <=> x2+2x+1=0 <=>(x+1)2=0<=>x=-1
bài 2: =(x-3)2+1
vì (x-3)2>=0 với mọi x nên (x-3)2+1>=1 => GTNN của x2-6x+10 là 1 khi x=3
a) \(\frac{x^2-9}{x+3}-ĐKXĐ:x+3\ne0\Leftrightarrow x\ne-3\)
b) \(\frac{x^2-9}{x+3}=\frac{\left(x-3\right)\left(x+3\right)}{x+3}=x-3\)
a) ĐKXĐ : \(x\ne0;x\ne\pm2;x\ne3\)
\(A=\left(\frac{2+x}{2-x}-\frac{4x^2}{x^2-4}-\frac{2-x}{2+x}\right):\left(\frac{x^2-3x}{2x^2-x^3}\right)\)
Đặt \(B=\frac{2+x}{2-x}-\frac{4x^2}{x^2-4}-\frac{2-x}{2+x}\)
\(B=\frac{\left(x+2\right)\left(x+2\right)}{-\left(x-2\right)\left(x+2\right)}-\frac{4x^2}{\left(x-2\right)\left(x+2\right)}-\frac{\left(2-x\right)\left(x-2\right)}{\left(2+x\right)\left(x-2\right)}\)
\(B=\frac{-\left(x+2\right)^2}{\left(x-2\right)\left(x+2\right)}-\frac{4x^2}{\left(x-2\right)\left(x+2\right)}-\frac{-\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}\)
\(B=\frac{-\left(x+2\right)^2-4x^2--\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}\)
\(B=\frac{-x^2-4x-4-4x^2+x^2-4x+4}{\left(x-2\right)\left(x+2\right)}\)
\(B=\frac{-4x^2-8x}{\left(x-2\right)\left(x+2\right)}\)
\(B=\frac{-4x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(B=\frac{-4x}{x-2}\)
\(\Rightarrow A=\frac{-4x}{x-2}:\left(\frac{x^2-3x}{2x^2-x^3}\right)\)
\(\Leftrightarrow A=\frac{-4x\cdot x^2\cdot\left(2-x\right)}{\left(x-2\right)\cdot x\cdot\left(x-3\right)}\)
\(\Leftrightarrow A=\frac{4x^2\cdot x\cdot\left(x-2\right)}{\left(x-3\right)\cdot x\cdot\left(x-2\right)}\)
\(\Leftrightarrow A=\frac{4x^2}{x-3}\)
b) \(\left|x-7\right|=4\)
\(\Rightarrow\orbr{\begin{cases}x-7=4\\x-7=-4\end{cases}\Rightarrow\orbr{\begin{cases}x=11\\x=3\end{cases}}}\)
Mà ĐKXĐ x khác 3 => x = 11
\(\Leftrightarrow A=\frac{4\cdot11^2}{11-3}=\frac{121}{2}\)
c) \(A=\frac{4x^2}{x-3}\)
Để A dương thì hoặc cả tử và mẫu âm hoặc cả tử và mẫu dương
Dễ thấy \(4x^2\ge0\forall x\)
=> Để A dương thì x - 3 dương
hay x - 3 > 0
<=> x > 3
Vậy x > 3 thì A > 0
Đặt phép chia đc x4+x3+ax2+(a+b)x+2b+1=(x3+ax+b)(x+1)+(b+1)
Để..chia hết cho... thì b+1=0=>b=-1 (a tùy ý)
Vậy a tùy ý;b=-1