Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a.\sqrt{32+10\sqrt{7}}+\sqrt{32-10\sqrt{7}}=\sqrt{25+2.5\sqrt{7}+7}+\sqrt{25-2.5\sqrt{7}+7}=5+\sqrt{7}+5-\sqrt{7}=10\)
\(b.\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}=\sqrt{13+30\sqrt{2+\sqrt{8+2.2\sqrt{2}+1}}}=\sqrt{13+30\sqrt{2+2\sqrt{2}+1}}=\sqrt{13+30\left(\sqrt{2}+1\right)}=\sqrt{25+2.5.3\sqrt{2}+18}=5+3\sqrt{2}\) \(c.\dfrac{3-\sqrt{x}}{9-x}=\dfrac{3-\sqrt{x}}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}=\dfrac{1}{3+\sqrt{x}}\)
\(d.\dfrac{x-5\sqrt{x}+6}{\sqrt{x}-3}=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}{\sqrt{x}-3}=\sqrt{x}-2\)
\(e.\dfrac{x-3\sqrt{x}+2}{\sqrt{x}-1}=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\sqrt{x}-1}=\sqrt{x}-2\)
\(f.\dfrac{x\sqrt{x}+64}{\sqrt{x}+4}=\dfrac{\left(\sqrt{x}+4\right)\left(x-4\sqrt{x}+16\right)}{\sqrt{x}+4}=x-4\sqrt{x}+16\)
\(g.\dfrac{x\sqrt{x}-y\sqrt{y}}{\sqrt{x}-\sqrt{y}}=\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{\sqrt{x}-\sqrt{y}}=x+\sqrt{xy}+y\)
Còn 2 con cuối làm tương tự nhé ( đăng dài quá ).
\(a.\sqrt{32+10\sqrt{7}}+\sqrt{32-10\sqrt{7}}=\sqrt{25+2.\sqrt{25}.\sqrt{7}+7}+\sqrt{25-2.\sqrt{25}.\sqrt{7}+7}=\sqrt{\left(5+\sqrt{7}\right)^2}+\sqrt{\left(5-\sqrt{7}\right)^2}=5+\sqrt{7}+5-\sqrt{7}=10\)\(b.\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}=\sqrt{13+30\sqrt{2+\sqrt{8+2.\sqrt{8}.1}+1}}=\sqrt{13+30\sqrt{2+\sqrt{\left(\sqrt{8}+1\right)^2}}}=\sqrt{13+30\sqrt{2+\sqrt{8}+1}}=\sqrt{13+30\sqrt{3+2\sqrt{2}}=\sqrt{13+30\sqrt{\left(\sqrt{2}+1\right)^2}}}=\sqrt{13+30\sqrt{2}+30}=\sqrt{\sqrt{25}+2.\sqrt{25}.\sqrt{18}+18}=\sqrt{\left(5+\sqrt{18}\right)^2}=5+\sqrt{18}\)
\(c.\dfrac{3-\sqrt{x}}{9-x}=\dfrac{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}{9-x}.\dfrac{1}{3+\sqrt{x}}=\dfrac{9-x}{9-x}.\dfrac{1}{3+\sqrt{x}}=\dfrac{1}{3+\sqrt{x}}=\dfrac{3-\sqrt{x}}{9-x}\)\(d.\dfrac{x-5\sqrt{x}+6}{\sqrt{x}-3}=\dfrac{x-2\sqrt{x}-3\sqrt{x}+6}{\sqrt{x}-3}=\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)-3\left(\sqrt{x}-2\right)}{\sqrt{x}-3}=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)}=\sqrt{x}-2\)\(e.\dfrac{x-3\sqrt{x}+2}{\sqrt{x}-1}=\dfrac{x-\sqrt{x}-2\sqrt{x}+2}{\sqrt{x}-1}=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)-2\left(\sqrt{x}-1\right)}{\sqrt{x}-1}=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\sqrt{x}-1}=\sqrt{x}-2\)
\(g.\dfrac{x\sqrt{x}-y\sqrt{y}}{\sqrt{x}-\sqrt{y}}=\dfrac{\left(x\sqrt{x}-y\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}=\dfrac{x^2+x\sqrt{xy}-y\sqrt{xy}-y^2}{x-y}=\dfrac{\sqrt{xy}\left(x-y\right)+\left(x-y\right)\left(x+y\right)}{x-y}=\dfrac{\left(x-y\right)\left(\sqrt{xy}+x+y\right)}{x-y}=x+y+\sqrt{xy}\)\(h.6-2x-\sqrt{9-6x+x^2}=6-2x-\sqrt{\left(x-3\right)^2}=6-2x-\left|x-3\right|=6-2x-3+x=3-x\)
\(i.\sqrt{x+2+2\sqrt{x+1}}=\sqrt{x+1+2\sqrt{x+1}+1}=\sqrt{\left(\sqrt{x+1}+1\right)^2}=\sqrt{x+1}+1\)
a) ĐK: \(x\ge -1\)
Ta có: \(x^2+\sqrt{x+1}=1\)
\(\Leftrightarrow (x^2-1)+\sqrt{x+1}=0\)
\(\Leftrightarrow (x-1)(x+1)+\sqrt{x+1}=0\)
\(\Leftrightarrow \sqrt{x+1}[(x-1)\sqrt{x+1}+1]=0\)
\(\Rightarrow \left[\begin{matrix} \sqrt{x+1}=0(1)\\ (x-1)\sqrt{x+1}+1=0(2)\end{matrix}\right.\)
Với \((1)\Rightarrow x+1=0\Rightarrow x=-1\) (thỏa mãn)
Với \((2)\Rightarrow x\sqrt{x+1}-(\sqrt{x+1}-1)=0\)
\(\Leftrightarrow x\sqrt{x+1}-\frac{x}{\sqrt{x+1}+1}=0\)
\(\Leftrightarrow x\left(\sqrt{x+1}-\frac{1}{\sqrt{x+1}+1}\right)=0\)
\(\Leftrightarrow x.\frac{x+1+\sqrt{x+1}-1}{\sqrt{x+1}+1}=0\)
\(\Leftrightarrow x.\frac{x+\sqrt{x+1}}{\sqrt{x+1}+1}=0\)
\(\Rightarrow \left[\begin{matrix} x=0\\ x+\sqrt{x+1}=0\end{matrix}\right.\)
Với \(x+\sqrt{x+1}=0\Rightarrow x=-\sqrt{x+1}\Rightarrow \left\{\begin{matrix} x\leq 0\\ x^2=x+1\end{matrix}\right.\Rightarrow x=\frac{1-\sqrt{5}}{2}\)
Vậy \(x=\left\{-1; \frac{1-\sqrt{5}}{2}; 0\right\}\)
b) ĐK: \(-3\leq x\leq 6\)
Ta có: \((\sqrt{3+x}+\sqrt{6-x})^2=3+x+6-x+2\sqrt{(3+x)(6-x)}\)
\(=9+2\sqrt{(3+x)(6-x)}\geq 9\)
\(\Rightarrow \sqrt{3+x}+\sqrt{6-x}\geq 3\) do \(\sqrt{3+x}+\sqrt{6-x}\) không âm.
Dấu "=" xảy ra khi \(\sqrt{(3+x)(6-x)}=0\Leftrightarrow x=-3; x=6\)
Vậy \(x=-3\) or $x=6$
a: \(=\sqrt{11}-1\)
b: \(=3\sqrt{3}+1\)
c: \(=\sqrt{3}+\sqrt{2}\)
d: \(=\sqrt{3}-\sqrt{2}\)
e: \(=\sqrt{3}-1\)
g: \(=3+\sqrt{2}-3+\sqrt{2}=2\sqrt{2}\)
\(a,\dfrac{x+2\sqrt{x}-3}{\sqrt{x}-1}\)
\(\Leftrightarrow\dfrac{x+3\sqrt{x}-\sqrt{x}-3}{\sqrt{x}-1}\)
\(\Leftrightarrow\dfrac{\sqrt{x}.\left(\sqrt{x}+3\right)-\left(\sqrt{x}+3\right)}{\sqrt{x}-1}\)
\(\Leftrightarrow\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)
\(\Rightarrow\sqrt{x}+3\)
\(b,\dfrac{4y+3\sqrt{y}-7}{4\sqrt{y}+7}\)
\(\Leftrightarrow\dfrac{4y+7\sqrt{y}-4\sqrt{y}-7}{4\sqrt{y}+7}\)
\(\Leftrightarrow\dfrac{\sqrt{y}.\left(4\sqrt{y}\right)-\left(4\sqrt{y}+7\right)}{4\sqrt{y}+7}\)
\(\Leftrightarrow\dfrac{\left(4\sqrt{y}+7\right).\left(\sqrt{y}-1\right)}{4\sqrt{y}+7}\)
\(\Rightarrow\sqrt{y}-1\)
\(c,\dfrac{x\sqrt{y}-y\sqrt{x}}{\sqrt{x}-\sqrt{y}}\)
\(\Leftrightarrow\dfrac{\sqrt{xy}.\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}\)
\(\Rightarrow\sqrt{xy}\)
\(d,\dfrac{x-3\sqrt{x}-4}{x-\sqrt{x}-12}\)
\(\Leftrightarrow\dfrac{x+\sqrt{x}-4\sqrt{x}-4}{x+3\sqrt{x}-4\sqrt{x}-12}\)
\(\Leftrightarrow\dfrac{\sqrt{x}.\left(\sqrt{x}+1\right)-4\left(\sqrt{x}+1\right)}{\sqrt{x}.\left(x+3\right)-4\left(\sqrt{x}+3\right)}\)
\(\Leftrightarrow\dfrac{\left(\sqrt{x}+1\right).\left(\sqrt{x}-4\right)}{\left(\sqrt{x}+3\right).\left(\sqrt{x}-4\right)}\)
\(\Leftrightarrow\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\)
\(\Rightarrow\dfrac{x-2\sqrt{x}-3}{x-9}\)
\(e,\dfrac{1+\sqrt{x}+\sqrt{y}+\sqrt{xy}}{1+\sqrt{4}}\)
\(\Leftrightarrow\dfrac{1+\sqrt{x}+\sqrt{y}+\sqrt{xy}}{1+2}\)
\(\Rightarrow\dfrac{1+\sqrt{x}+\sqrt{y}+\sqrt{xy}}{3}\)
I) xd mọi x
\(\sqrt{x^2-8x+16}+\sqrt{x^2-10x+25}=9\)
\(\sqrt{\left(x-4\right)^2}+\sqrt{\left(x-5\right)^2}=9=>\left|x-4\right|+\left|x-5\right|=9\)
\(\left[{}\begin{matrix}x< 4\Rightarrow4-x+5-x=>x=0\left(n\right)\\4\le x< 5\Rightarrow x-4+5-x=9\left(vn\right)\\x\ge5\Rightarrow x-4+x-5=9\Rightarrow x=9\left(n\right)\\\end{matrix}\right.\)
kết luận
\(\left[{}\begin{matrix}x=0\\x=9\end{matrix}\right.\)
a) \(\sqrt{3}x-\sqrt{12}=0< =>\sqrt{3}x=\sqrt{12}=>x=2\)
Vay S = { 2 }
b) \(\sqrt{2}x+\sqrt{2}=\sqrt{8}+\sqrt{18}< =>\sqrt{2}x=\sqrt{8}+\sqrt{18}-\sqrt{2}< =>\sqrt{2}x=2\sqrt{2}+3\sqrt{2}-\sqrt{2}\) <=> \(\sqrt{2}x=4\sqrt{2}=>x=4\)
Vay S = { 4 }
c) \(\sqrt{5}x^2-\sqrt{20}=0< =>\sqrt{5}x^2=\sqrt{20}< =>x^2=2=>x=\sqrt{2}\)
Vay S = {\(\sqrt{2}\) }
d) \(\sqrt{x^2+6x+9}=3x+6< =>\sqrt{\left(x+3\right)^2}=3x+6< =>x+3=3x+6< =>-2x=\) \(3=>x=-\dfrac{3}{2}\)
Vay S = { - 3/2 }
e) \(\sqrt{x^2-4x+4}-2x+5=0< =>\sqrt{\left(x-2\right)^2}-2x+5=0< =>x-2-2x+5=0\) <=> \(-x+3=0< =>-x=-3=>x=3\)
Vay S = { 3 }
F) \(\sqrt{\dfrac{2x-3}{x-1}}=2\)
<=> \(\dfrac{2x-3}{x-1}=4< =>2x-3=4x-4< =>-2x=-1=>x=\dfrac{1}{2}\)
Vay S = { 1/2 }
g) \(\dfrac{\sqrt{2x-3}}{\sqrt{x-1}}=2< =>\sqrt{\dfrac{2x-3}{x-1}}=2< =>\dfrac{2x-3}{x-1}=4< =>2x-3=4x-4< =>-2x=-1=>x=\dfrac{1}{2}\)
bạn chưa có ĐKXĐ nên chưa xét kết quả có đúng vs Đk ko, có vài câu sai kết quả
đề bài là gj bạn ơi
a: \(x+\sqrt{x}-2=\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)\)
b: \(x-9=\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)\)
c: \(x-3\sqrt{x}+2=\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)\)
d: \(x-5\sqrt{x}-6=\left(\sqrt{x}-6\right)\left(\sqrt{x}+1\right)\)
e: \(x-4=\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)\)
f: \(x+7\sqrt{x}+12=\left(\sqrt{x}+4\right)\cdot\left(\sqrt{x}+3\right)\)
g: \(x+\sqrt{x}=\sqrt{x}\left(\sqrt{x}+1\right)\)