\(x+\sqrt{-2x-1}=0\)0

b, \(\sqrt{x}+\sqrt{x-1}=1\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2019

\(\left(\sqrt{5+\sqrt{21}}+\sqrt{5-\sqrt{21}}\right)\)

\(=\frac{\sqrt{2}\left(\sqrt{5+\sqrt{21}}+\sqrt{5-\sqrt{21}}\right)}{\sqrt{2}}\)

\(=\frac{\sqrt{10+2\sqrt{21}}+\sqrt{10-2\sqrt{21}}}{\sqrt{2}}\)

\(=\frac{\sqrt{3+2\sqrt{3.7}+7}+\sqrt{3-2\sqrt{3.7}+7}}{\sqrt{2}}\)

\(=\frac{\sqrt{\left(\sqrt{3}-\sqrt{7}\right)^2}+\sqrt{\left(\sqrt{3}+\sqrt{7}\right)^2}}{\sqrt{2}}\)

\(=\frac{|\sqrt{3}-\sqrt{7}|+|\sqrt{3}+\sqrt{7}|}{\sqrt{2}}\)

\(=\frac{-\sqrt{3}+\sqrt{7}+\sqrt{3}+\sqrt{7}}{\sqrt{2}}\)

\(=\frac{2\sqrt{7}}{\sqrt{2}}\)

\(=\sqrt{14}\)

22 tháng 9 2019

\(\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{2}-\sqrt{3}}\)

\(=\frac{1}{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right)}+\frac{1}{(\sqrt{2}-\sqrt{3})\left(\sqrt{2}+\sqrt{3}\right)}\)

\(=\frac{2}{2-3}=\frac{2}{-1}=-2\)

1 tháng 8 2020

a) \(\sqrt{x^2-9}-3\sqrt{x-3}=0\\ \Leftrightarrow\sqrt{\left(x-3\right)\left(x+3\right)}-3\sqrt{x-3}=0\\ \Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}-3\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-3}=0\\\sqrt{x+3}=3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=3\\x=6\end{matrix}\right.\)

S = (3;6)

b)\(\sqrt{x^2-4}-2\sqrt{x-2}=0\\ \Leftrightarrow\sqrt{x-2}\left(\sqrt{x+2}-2\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-2}=0\\\sqrt{x+2}=2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=2\\x=2\end{matrix}\right.\) S= (2)

c)\(\sqrt{\frac{2x-3}{x-1}}=2\left(đkxđ:x\ne1\right)\Leftrightarrow2\sqrt{x-1}=\sqrt{2x-3}\\ \Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\) S= (1/2)

d) đkxđ : x khác -1

\(\sqrt{\frac{4x+3}{x+1}}=3\Leftrightarrow4x+3=9x+9\Leftrightarrow x=-\frac{6}{5}\) S = (-6/5)

e) đk x >= 3/2

\(\frac{\sqrt{2x-3}}{\sqrt{x-1}}=2\Leftrightarrow2x-3=4x-4\Leftrightarrow x=\frac{1}{2}\) (loại) vậy pt vô nghiệm

f) đk x >= -3/4

\(\frac{\sqrt{4x+3}}{\sqrt{x+1}}=3\Leftrightarrow4x+3=9x+9\Leftrightarrow x=-\frac{6}{5}\) (loại) vậy pt vô nghiệm

16 tháng 7 2017

a) \(\sqrt{x+1}=x-1\) ( ĐKXĐ : x \(>0\) )

\(\Rightarrow x+1=\left(x-1\right)^2\)

\(x+1=x^2-2x+1\)

\(x^2-3x=0\)

\(x\left(x-3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\) ( loại x = 0 do không thoả mãn ĐKXĐ )

Vậy nghiệm của pt là x = 3

b) \(x-\sqrt{2x+3}=0\) ( ĐKXĐ : x \(\ge-\dfrac{3}{2}\) , x \(\ne\) -1 )

\(x^2-2x-3=0\)

\(\left(x-3\right)\left(x+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\) ( Loại x = -1 do không thoả mãn ĐKXĐ )

Vậy nghiệm của pt là x = 3

c) \(\sqrt{x^2+2x+1}=5\)

\(\sqrt{\left(x+1\right)^2}=5\)

\(x+1=5\)

\(x=4\)

Vậy nghiệm của pt là x = 4

d) \(\sqrt{x-4\sqrt{x}+4}=3\) ( ĐKXĐ : x \(\ge\) 0 )

\(\sqrt{\left(\sqrt{x}-2\right)^2}=3\)

\(\sqrt{x}-2=3\)

\(\sqrt{x}=5\Rightarrow x=5\)

16 tháng 7 2017

c) \(\sqrt{x^2+2x+1}=5\)

<=> \(\sqrt{\left(x+1\right)^2}=5\)

<=> \(\left|x+1\right|=5\)

Ta xét 2 TH :

* Khi \(x+1\ge0\) <=> x \(\ge\) -1

Ta có PT :

x + 1 = 5

=> x = 4 (TM)

* Khi x + 1 < 0 <=> x < - 1

Ta có PT :

- x - 1 = 5

<=> -x = 5+1

=> x = -6 (TM)

Vậy Tập nghiệm của Pt là : S = { -6 ; 4 }

d) \(\sqrt{x-4\sqrt{x}+4}=3\)

<=> \(\sqrt{\left(\sqrt{x}\right)^2-2.\sqrt{x}.2+2^2}\) = 3

<=> \(\sqrt{\left(\sqrt{x}-2\right)^2}\) = 3

<=> \(\left|\sqrt{x}-2\right|\) = 3

Ta xét 2TH :

* Khi \(\sqrt{x}-2\ge0< =>x\ge4\)

Ta có PT :

\(\sqrt{x-2}=3\)

<=> \(\sqrt{x}=5\) => x = 25 (TM)

* Khi \(\sqrt{x}-2< 0\Leftrightarrow x< 4\)

Ta có PT :

\(-\sqrt{x-2}=3\)

vì để \(\sqrt{x-2}\) được xác định thì \(\sqrt{x-2}\ge0\) => x \(\ge\) 0

nên => TH 2 không thỏa mãn

Vậy S = {25}

5 tháng 7 2019

\(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=3\Leftrightarrow\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-2\right)^2}=3\Leftrightarrow\left|x-1\right|+\left|x-2\right|=3\) \(+,x\ge2\Rightarrow\left\{{}\begin{matrix}x-2\ge0\\x-1\ge1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left|x-2\right|=x-2\\\left|x-1\right|=x-1\end{matrix}\right.\Rightarrow\left|x-2\right|+\left|x-1\right|=x-2+x-1=3\Leftrightarrow2x-3=3\Leftrightarrow x=3\left(\text{t/m}\right)\) \(+,1\le x< 2\Rightarrow\left\{{}\begin{matrix}x-1\ge0\\x-2< 0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left|x-1\right|=x-1\\\left|x-2\right|=-\left(x-2\right)=2-x\end{matrix}\right.\Rightarrow\left|x-1\right|+\left|x-2\right|=x-1+2-x=1\left(l\right)\) \(+,x< 1\Rightarrow\left\{{}\begin{matrix}x-1< 0\\x-2< 0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left|x-1\right|=-\left(x-1\right)=1-x\\\left|x-2\right|=-\left(x-2\right)=2-x\end{matrix}\right.\Rightarrow\left|x-1\right|+\left|x-2\right|=1-x+2-x=3\Leftrightarrow3-2x=3\Leftrightarrow x=0\left(\text{t/m}\right)\) \(f,\left\{{}\begin{matrix}\sqrt{x^2-9}\ge0\\\sqrt{x^2-6x+9}\ge0\end{matrix}\right.mà:\sqrt{x^2-9}+\sqrt{x^2-6x+9}=0\Rightarrow\left\{{}\begin{matrix}\sqrt{x^2-9}=0\\\sqrt{x^2-6x+9}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2-9=0\\\sqrt{\left(x-3\right)^2}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2-9=0\\\left|x-3\right|=0\end{matrix}\right.\Leftrightarrow x=3\)\thay vào ta thấy thoa man => x=3

5 tháng 7 2019

\(ĐK:x\ge4\)\(\sqrt{x^2+x-20}=\sqrt{x^2+5x-4x-20}=\sqrt{x\left(x+5\right)-4\left(x+5\right)}=\sqrt{\left(x-4\right)\left(x+5\right)}=\sqrt{x-4}.\sqrt{x+5}=\sqrt{x-4}\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-4}=0\\\sqrt{x+5}=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x+5=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\left(tm\right)\\x=-4\left(l\right)\end{matrix}\right.\Rightarrow x=4\) \(b,ĐK:x\le2;\sqrt{x+1}+\sqrt{2-x}=\sqrt{6}\Leftrightarrow x+1+2-x+2\sqrt{\left(x+1\right)\left(2-x\right)}=6\Leftrightarrow3+2\sqrt{\left(x+1\right)\left(2-x\right)}=6\Leftrightarrow2\sqrt{\left(x+1\right)\left(2-x\right)}=3\Leftrightarrow\sqrt{\left(x-1\right)\left(2-x\right)}=1,5\Leftrightarrow\left(x-1\right)\left(2-x\right)=\frac{9}{4}\Leftrightarrow\left(x-1\right)\left(x-2\right)=-\frac{9}{4}\Leftrightarrow x^2-3x+2=-\frac{9}{4}\Leftrightarrow x^2-3x+\frac{9}{4}=-2\Leftrightarrow\left(x-\frac{3}{2}\right)^2=-2\Rightarrow vonghiem\)

14 tháng 8 2017

I) xd mọi x

\(\sqrt{x^2-8x+16}+\sqrt{x^2-10x+25}=9\)

\(\sqrt{\left(x-4\right)^2}+\sqrt{\left(x-5\right)^2}=9=>\left|x-4\right|+\left|x-5\right|=9\)

\(\left[{}\begin{matrix}x< 4\Rightarrow4-x+5-x=>x=0\left(n\right)\\4\le x< 5\Rightarrow x-4+5-x=9\left(vn\right)\\x\ge5\Rightarrow x-4+x-5=9\Rightarrow x=9\left(n\right)\\\end{matrix}\right.\)

kết luận

\(\left[{}\begin{matrix}x=0\\x=9\end{matrix}\right.\)

26 tháng 7 2019

Bài Làm:

1, Tìm ĐKXĐ:

a, Để \(\sqrt{\frac{x^2+3}{3-2x}}\) có nghĩa thì: \(\frac{x^2+3}{3-2x}\ge0\)

\(x^2+3>0\forall x\) nên \(3-2x\ge0\)

\(\Leftrightarrow x\le\frac{3}{2}\)

Vậy ...

b, Để \(\sqrt{\frac{-2}{x^3}}\) có nghĩa thì: \(\frac{-2}{x^3}\ge0\)

\(-2< 0\) nên \(x^3\le0\Leftrightarrow x\le0\)

Vậy ...

c, Để \(\sqrt{x\left(x-2\right)}\) có nghĩa thì: \(x\left(x-2\right)\ge0\)

\(TH1:\left\{{}\begin{matrix}x\ge0\\x-2\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ge2\end{matrix}\right.\Leftrightarrow x\ge2\)

\(TH2:\left\{{}\begin{matrix}x\le0\\x-2\le0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le0\\x\le2\end{matrix}\right.\Leftrightarrow x\le0\)

\(\Leftrightarrow\) \(x\ge2\) hoặc \(x\le0\)

Vậy ...

29 tháng 8 2019

a, ĐKXĐ : \(\left[{}\begin{matrix}x\ge0\\ y>0\end{matrix}\right.\) hoặc \(\left[{}\begin{matrix}x>0\\y\ge0\end{matrix}\right.\)

Ta có :\(\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2\)

= \(\frac{\sqrt{x^2}\sqrt{x}+\sqrt{y^2}\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2=\frac{\sqrt{x^3}+\sqrt{y^3}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2\)

= \(\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)}{\sqrt{x}+\sqrt{y}}-\left(x-2\sqrt{xy}+y\right)\)

= \(\left(x-\sqrt{xy}+y\right)-\left(x-2\sqrt{xy}+y\right)\)

= \(x-\sqrt{xy}+y-x+2\sqrt{xy}-y\)

= \(\sqrt{xy}\)

29 tháng 8 2019

\(\sqrt{\frac{\sqrt{a}-1}{\sqrt{b}+1}}:\sqrt{\frac{\sqrt{b}-1}{\sqrt{a}+1}}\) \(=\sqrt{\frac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\left(\sqrt{b}+1\right)\left(\sqrt{b}-1\right)}}\)\(=\sqrt{\frac{a^2-1}{b^2-1}}\) (*)

Thay a=7,25 và b= 3,25 vào (*) ta có:

\(\sqrt{\frac{7,25^2-1}{3,25^2-1}}\) \(=\frac{5\sqrt{33}}{4}:\frac{3\sqrt{17}}{4}=\frac{5\sqrt{33}}{3\sqrt{17}}=\frac{5\sqrt{561}}{51}\)