Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x^4 - x^3 - x + 1
= x^3 ( x - 1 ) - ( x- 1 )
= ( x^3 - 1 )(x - 1)
= ( x- 1 )^2 (x^2 + x + 1 )
a)x4-x3-x+1
=x3(x-1)-(x-1)
=(x-1)(x3-1)
=(x-1)(x-1)(x2+x+1)
=(x-1)2(x2+x+1)
b)5x2-4x+20xy-8y
(sai đề)
Bài dài quá bạn mình VD mỗi bài 1 câu thôi
Bài 1 : Phương pháp : biểu diễn biểu thức dưới dạng một lũy thừa mũ chẵn cộng với một số nguyên dương
a) x2 + 2x + 2
= x2 + 2 . x . 1 + 11 + 1
= ( x + 1 )2 + 1
mà ( x + 1 )2 >= 0 với mọi x
=> ( x + 1 )2 + 1 >= 1 với mọi x => vô nghiệm
Bài 2 :
a) \(4x^2-12x+11\)
\(=4\left(x^2-3x+\frac{11}{4}\right)\)
\(=4\left(x^2-2\cdot x\cdot\frac{3}{2}+\left(\frac{3}{2}\right)^2+\frac{1}{2}\right)\)
\(=4\left[\left(x-\frac{3}{2}\right)^2+\frac{1}{2}\right]\)
\(=4\left(x-\frac{3}{2}\right)^2+2\)
mà 4 ( x - 3/2 )2 >= 0 với mọi x
=> biểu thức >= 2 với mọi x
Dấu "=" xảy ra <=> x - 3/2 = 0 <=> x = 3/2
Vậy Amin = 2 <=> x = 3/2
a) \(x^2-2x-4y^2-4y=\left(x^2-4y^2\right)-\left(2x+4y\right)=\left(x-2y\right).\left(x+2y\right)-2.\left(x+2y\right)\)
\(=\left(x+2y\right).\left(x-2y-2\right)\)
b) \(x^4+2x^3-4x-4=\left(x^4-4\right)+\left(2x^3-4x\right)=\left(x^2+2\right).\left(x^2-2\right)+2x.\left(x^2-2\right)\)
\(=\left(x^2-2\right).\left(x^2+2+2x\right)\)
c) \(x^2.\left(1-x\right)^2-4x-4x^2=x^2.\left(x^2-2x+1\right)-4x-4x^2=x^4-2x^3+x^2-4x-4x^2\)
\(x^4-2x^3-3x^2-4x=x.\left(x^3-2x^2-3x-4\right)\)
d) \(\left(1+2x\right).\left(1-2x\right)-x.\left(x+2\right).\left(x-2\right)=1-4x^2-x.\left(x^2-4\right)\)
\(=1-4x^2-x^3+4x=1-x^3+4x-4x^2=\left(1-x\right).\left(1+x+x^2\right)+4x.\left(1-x\right)\)
\(=\left(1-x\right).\left(1+x+x^2+4x\right)=\left(1-x\right).\left(x^2+5x+1\right)\)
e) \(x^2+y^2-x^2y^2+xy-x-y=\left(x^2-x\right)-\left(x^2y^2-y^2\right)+\left(xy-y\right)\)
\(=x.\left(x-1\right)-y^2.\left(x^2-1\right)+y.\left(x-1\right)=x.\left(x-1\right)-y^2.\left(x-1\right)\left(x+1\right)+y.\left(x-1\right)\)
\(=\left(x-1\right).\left(x-y^2.\left(x+1\right)+y\right)=\left(x-1\right).\left(x-xy^2-y^2+y\right)\)
\(=\left(x-1\right)\left[-\left(xy^2-x\right)-\left(y^2-y\right)\right]=\left(x-1\right)\left[-x\left(y^2-1\right)-y\left(y-1\right)\right]\)
\(=\left(x-1\right)\left[-x\left(y-1\right)\left(y+1\right)-y\left(y-1\right)\right]=\left(x-1\right)\left(y-1\right)\left(-x.\left(y+1\right)-y\right)\)
\(=\left(x-1\right)\left(y-1\right)\left(-xy-x-y\right)=-\left(x-1\right)\left(y-1\right)\left(xy+x+y\right)\)
a) \(x^3-x^2-5x+125\)
\(=\left(x+5\right)\left(x^2-5x+25\right)-x\left(x+5\right)\)
\(=\left(x+5\right)\left(x^2-6x+25\right)\)
b) \(5x^2-5xy-3x+3y\)
\(=5x\left(x-y\right)-3\left(x-y\right)\)
\(=\left(x-y\right)\left(5x-3\right)\)
c) \(x^2-2x-4y^2+1\)
\(=\left(x-1\right)^2-4y^2\)
\(=\left(x-2y-1\right)\left(x+2y-1\right)\)
Câu 1 : Tìm x :
1. \(A=x^2+4x-2\)
\(A=x^2+2.x.2+2^2-2^2-2\)
\(A=\left(x^2+4x+2^2\right)-4-2\)
\(A=\left(x+2\right)^2-6\)
\(\left(x+2\right)^2-6\ge-6\)
MIn A= -6 khi \(\left(x+2\right)^2=0\)
=> \(x+2=0hayx=-2\)
Vậy x=2
những câu tiếp theo làm tg tự như thế nhé
Câu 1:
a) Ta có: \(A=x^2+4x-2\)
\(=x^2+4x+4-6\)
\(=\left(x+2\right)^2-6\)
Ta có: \(\left(x+2\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+2\right)^2-6\ge-6\forall x\)
Dấu '=' xảy ra khi
\(\left(x+2\right)^2=0\Leftrightarrow x+2=0\Leftrightarrow x=-2\)
Vậy: x=-2
b) Ta có: \(B=2x^2-4x+3\)
\(=2\left(x^2-2x+\frac{3}{2}\right)\)
\(=2\left(x^2-2\cdot x\cdot1+1+\frac{1}{2}\right)\)
\(=2\left[\left(x^2-2x\cdot1+1\right)+\frac{1}{2}\right]\)
\(=2\left[\left(x-1\right)^2+\frac{1}{2}\right]\)
\(=2\left(x-1\right)^2+1\)
Ta có: \(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow2\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow2\left(x-1\right)^2+1\ge1\forall x\)
Dấu '=' xảy ra khi
\(2\left(x-1\right)^2=0\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Vậy: x=1
c) Ta có: \(C=x^2+y^2-4x+2y+5\)
\(=x^2-4x+4+y^2+2y+1\)
\(=\left(x^2-4x+4\right)+\left(y^2+2y+1\right)\)
\(=\left(x-2\right)^2+\left(y+1\right)^2\)
Ta có: \(\left(x-2\right)^2\ge0\forall x\)
\(\left(y+1\right)^2\ge0\forall y\)
Do đó: \(\left(x-2\right)^2+\left(y+1\right)^2\ge0\forall x,y\)
Dấu '=' xảy ra khi
\(\left\{{}\begin{matrix}\left(x-2\right)^2=0\\\left(y+1\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\)
Vậy: x=2 và y=-1
Câu 2:
a) Ta có: \(A=-x^2+6x+5\)
\(=-\left(x^2-6x-5\right)\)
\(=-\left(x^2-6x+9-14\right)\)
\(=-\left[\left(x^2-6x+9\right)-14\right]\)
\(=-\left[\left(x-3\right)^2-14\right]\)
\(=-\left(x-3\right)^2+14\)
Ta có: \(\left(x-3\right)^2\ge0\forall x\)
\(\Rightarrow-\left(x-3\right)^2\le0\forall x\)
\(\Leftrightarrow-\left(x-3\right)^2+14\le14\forall x\)
Dấu '=' xảy ra khi
\(-\left(x-3\right)^2=0\Leftrightarrow\left(x-3\right)^2=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)
Vậy: GTLN của đa thức \(A=-x^2+6x+5\) là 14 khi x=3
b) Ta có: \(B=-4x^2-9y^2-4x+6y+3\)
\(=-\left(4x^2+9y^2+4x-6y-3\right)\)
\(=-\left(4x^2+4x+1+9y^2-6y+1-5\right)\)
\(=-\left[\left(4x^2+4x+1\right)+\left(9y^2-6y+1\right)-5\right]\)
\(=-\left[\left(2x+1\right)^2+\left(3y-1\right)^2-5\right]\)
\(=-\left(2x+1\right)^2-\left(3y-1\right)^2+5\)
Ta có: \(\left(2x+1\right)^2\ge0\forall x\)
\(\Rightarrow-\left(2x+1\right)^2\le0\forall x\)(1)
Ta có: \(\left(3y-1\right)^2\ge0\forall y\)
\(\Rightarrow-\left(3y-1\right)^2\le0\forall y\)(2)
Từ (1) và (2) suy ra
\(-\left(2x+1\right)^2-\left(3y-1\right)^2\le0\forall x,y\)
\(\Rightarrow-\left(2x+1\right)^2-\left(3y-1\right)^2+5\le5\forall x,y\)
Dấu '=' xảy ra khi
\(\left\{{}\begin{matrix}-\left(2x+1\right)^2=0\\-\left(3y-1\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x+1\right)^2=0\\\left(3y-1\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2x+1=0\\3y-1=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2x=-1\\3y=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{-1}{2}\\y=\frac{1}{3}\end{matrix}\right.\)
Vậy: GTLN của đa thức \(B=-4x^2-9y^2-4x+6y+3\) là 5 khi và chỉ khi \(x=\frac{-1}{2}\) và \(y=\frac{1}{3}\)
Câu 3:
a) Ta có: \(x^2+y^2-2x+4y+5=0\)
\(\Rightarrow x^2-2x+1+y^2+4y+4=0\)
\(\Rightarrow\left(x^2-2x+1\right)+\left(y^2+4y+4\right)=0\)
\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
Vậy: x=1 và y=-2
b) Ta có: \(5x^2+9y^2-12xy-6x+9=0\)
\(\Rightarrow x^2+4x^2+9y^2-12xy-6x+9=0\)
\(\Rightarrow\left(4x^2+12xy+9y^2\right)+\left(x^2-6x+9\right)=0\)
\(\Rightarrow\left(2x+3y\right)^2+\left(x-3\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x+3y\right)^2=0\\\left(x-3\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+3y=0\\x-3=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2\cdot3+3y=0\\x=3\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}6+3y=0\\x=3\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}3y=-6\\x=3\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=-2\\x=3\end{matrix}\right.\)
Vậy: x=3 và y=-2
4.a) \(2x^2-10x-3x-2x^2-26=0\)
\(-13x-26=0\Rightarrow-13\left(x+2\right)=0\)
\(\Rightarrow x=-2\)
b) \(2\left(x+5\right)-x^2-5x=0\)
\(2x+10-x^2-5x=0\Leftrightarrow-x^2-3x+10=0\)
\(-\left(x^2+3x-10\right)=0\)
\(-\left(x^2-2x+5x-10\right)=-\left(x\left(x-2\right)+5\left(x-2\right)\right)=0\)
\(-\left(x-2\right)\left(x+5\right)=0\)
\(\left\{{}\begin{matrix}x-2=0\\x+5=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)
c) \(\left(2x-3\right)^2-\left(x+5\right)^2=0\)
\(\left(2x-3-x-5\right)\left(2x-3+x+5\right)=0\)
\(\left(x-8\right)\left(3x+2\right)=0\)
\(\left\{{}\begin{matrix}x-8=0\\3x+2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=8\\x=-\dfrac{2}{3}\end{matrix}\right.\)
d) \(x^3+x^2-4x-4=0\)
\(x^2\left(x+1\right)-4\left(x+1\right)=0\)
\(\left(x+1\right)\left(x^2-4\right)=\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x+1=0\\x-2=0\\x+2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-1\\x=2\\x=-2\end{matrix}\right.\)
g) \(\left(x-1\right)\left(2x+3-x\right)=0\)
\(\left(x-1\right)\left(x+3\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x-1=0\\x+3=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)
h) \(x^2-4x+8-2x+1=x^2-6x+9=0\)
\(\left(x-3\right)^2=0\Rightarrow x=3\)
a,\(-4x^2+4x-1\)
\(\Leftrightarrow\left(-2x-1\right)^2\)
b,\(\left(2x+1\right)^2-4\left(x-1\right)^2\)
\(\Rightarrow\left[2x+1-2\left(x-1\right)\right].\left[2x+1+2\left(x-1\right)\right]\)
\(\Rightarrow\left(2x+1-2x+2\right)\left(2x+1+2x-2\right)\)
\(\Rightarrow3\left(4x-1\right)\)
c,\(\left(2x-y\right)^2-4x^2+12x-9\)
\(\Leftrightarrow\left(2x+y\right)^2-\left(4x^2-12x+9\right)\)
\(\Leftrightarrow\left(2x+y\right)^2-\left(2x-3\right)^2\)
\(\Leftrightarrow\left(2x+y-2x+3\right)\left(2x+y+2x-3\right)\)
\(\Rightarrow\left(y+3\right)\left(4x+y-3\right)\)
d,\(\left(x+1\right)^2-4\left(x+1\right)y^2+4y^4\)
\(\Leftrightarrow\left(x+1\right)^2-2\left(x+1\right)2y^2+2^2y^4\)
\(\Leftrightarrow\left(x+1\right)^2-2\left(x+1\right)2y^2+4\left(y^2\right)^2\)
\(\Leftrightarrow\left(x+1\right)^2-2\left(x+1\right)-2y^2+\left(2y^2\right)^2\)
\(\Leftrightarrow\left(x+1-2y^2\right)^2\)
a. x3+x2y-4x-4y
=x2(x+y)-4(x+y)
= (x+y).(x2-4)
= (x+y).(x-4).(x+2)
d. a4+4
= (a2)2+22
= (a2)2+4a2+22-4a2
= (a2+2)2-4a2
= (a2+2-2a)(a2+2+2a)
= (a2-2a+2)(a2+2a+2)
b. x3-4x2+4x-1
= x(x2-4x+1)-1
=x(x-2)2-12
=x(x-2-1)(x-2+1)
=x(x-3)(x-1