
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


dùng hằng đẳng thức để phân tích:
1) \(\left(a+b\right)^3+\left(a-b\right)^3=\left[\left(a+b\right)+\left(a-b\right)\right]\left[\left(a+b\right)^2-\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]\)
\(=\left(a+b+a-b\right)\left(a^2+2ab+b^2+b^2-a^2+a^2-2ab+b^2\right)\)
\(=2a\left(a^2+3b^2\right)\)
2)\(\left(a+b\right)^3-\left(a-b\right)^3=\left[\left(a+b\right)-\left(a-b\right)\right]\left[\left(a+b\right)^2+\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]\)
\(=\left(a+b+a-b\right)\left(a^2+2ab+b^2+a^2-b^2+a^2-2ab+b^2\right)\)
\(=2a\left(3a^2+b^2\right)\)
3)\(8x^3+12x^2y+6xy^2+y^3=\left(2x\right)^3+3.\left(2x\right)^2.y+3.2x.y^2+y^3=\left(2x+y\right)^3\)

Lời giải:
$x^3-4x^2-12x+27$
$=(x^3+3x^2)-(7x^2+21x)+(9x+27)$
$=x^2(x+3)-7x(x+3)+9(x+3)$
$=(x+3)(x^2-7x+9)$

\(x^3-4x^2+12x-27\)
\(=x^3-3x^2-x^2+3x+9x-27\)
\(=x^2\left(x-3\right)-x\left(x-3\right)+9\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2-x+9\right)\)

Sửa đề: x^4+64
x^4+64
=x^4+16x^2+64-16x^2
=(x^2+8)^2-(4x)^2
=(x^2-4x+8)(x^2+4x+8)

a, \(m^3+27\)
\(\Leftrightarrow m^3+3^3\)
\(\Leftrightarrow\left(m+3\right)\left(m^2-m.3+3^2\right)\)
\(\Leftrightarrow\left(m+3\right)\left(m^2-3m+9\right)\)
b,\(\frac{1}{27}+a^3\)
\(\Leftrightarrow\frac{1}{27}\left(1+27a^3\right)\)
\(\Leftrightarrow\frac{1}{27}.\left(1+3a\right)\left(1-3a+9a^2\right)\)
c,\(\left(a+b\right)^3-c^3\)
\(\Leftrightarrow\left(a+b-c\right)\left[\left(a+b\right)^2+\left(a+b\right)c+c^2\right]\)
\(\Leftrightarrow\left(a+b-c\right)\left(a^2+2ab+b^2+ac+bc+c^2\right)\)
d,\(x^9+1\)
\(\Leftrightarrow\left(x^3+1\right)\left(x^6-x^3+1\right)\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)\left(x^6-x^3+1\right)\)
e,\(x^3+9x^2+27x+27\)
\(\Leftrightarrow x^3+3.x^2.3+3x.9+3^3\)
\(\Leftrightarrow x^3+3x^2.3+3x+3^2+3^3\)
\(\Leftrightarrow\left(x+3\right)^3\)

a: Sửa đề: x^3-x^2+5x-5
=x^2(x-1)+5(x-1)
=(x-1)(x^2+5)
b: x^3+4x^2+x-6
=x^3-x^2+5x^2-5x+6x-6
=(x-1)(x^2+5x+6)
=(x-1)(x+2)(x+3)
c: \(=\left(x+2\right)^3+y^3\)
\(=\left(x+2+y\right)\left(x^2+4x+4-xy-2y+y^2\right)\)

Đặt A = a + b ; B = a - b
A^3 + B^3
= (A + B)(A² - AB + B² )
= (a + b + a - b)[(a + b)² - (a + b)(a - b) + (a - b)²]
= 2a( a² + 2ab + b² - a² + b² + a² - 2ab + b² )
= 2a( a² + 3b²)
(a+b)\(^3\) - (a-b)\(^3\)
= [ (a+b) - (a-b) ] [ (a+b)\(^2\) + (a+b)(a-b) + (a-b)\(^2\) ]
= [ a+b - a+b ] [ a\(^2\) + 2ab + b\(^2\) + a\(^2\) - b\(^2\) + a\(^2\) - 2ab + b\(^2\) ]
= 2b ( 3a\(^2\) + b\(^2\) )

x3-3x2-3x+1=x3+1-3x2-3x
=(x+1)(x2-x+1)-3x(x+1)
=(x+1)(x2-x+1-3x)
=(x+1)(x2-4x+1)

Ta có:
\(x^3-x^2-x-2=x^3-2x^2+x^2-2x+x-2\)
\(=x^2\left(x-2\right)+x\left(x-2\right)+x-2=\left(x-2\right)\left(x^2+x+1\right)\)
`a, x^3 + 64`
`= x^3 + 4^3`
`= (x +4)(x^2 - 4x + 16)`
`b, 8x^3 - 1/27`
`= (2x)^3- (1/3)^3`
`= (2x-1/3)(4x^2 + (2x)/3 + 1/9)`