
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a) Ta có: \(\left(x+y\right)\left(x+y\right)\left(x+y\right)-3xy\left(x+y\right)\)
\(=\left(x^2+2xy+y^2\right)\left(x+y\right)-3x^2y-3xy^2\)
\(=x^3+3x^2y+3xy^2+y^3-3x^2y-3xy^2\)
\(=x^3+y^3\)
b) Ta có: \(\left(x+y\right)\left(x^2-xy+y^2\right)-\left(x-y\right)\left(x^2+xy+y^2\right)\)
\(=x^3+y^3-x^3+y^3\)
\(=2y^3\) (ko phải HĐT đâu nhé bn, tại mk rút gọn luôn nên nó cg samesame thế:))
Bài làm :
\(\text{a) }\left(x+y\right)\left(x+y\right)\left(x+y\right)-3xy\left(x+y\right)\)
\(=\left(x^2+2xy+y^2\right)\left(x+y\right)-3x^2y-3xy^2\)
\(=x^3+3x^2y+3xy^2+y^3-3x^2y-3xy^2\)
\(=x^3+y^3\)
=> Điều phải chứng minh
\(\text{b) }\left(x+y\right)\left(x^2-xy+y^2\right)-\left(x-y\right)\left(x^2+xy+y^2\right)\)
\(=x^3+y^3-x^3+y^3\)
\(=2y^3\)
=> Điều phải chứng minh

a) \(\left(x+2y\right)^2=x^2+4xy+4y^2\)
b) \(\left(3x-\frac{1}{8}y\right)^2=9x^2-\frac{3}{4}xy+\frac{1}{64}y^2\)
c) \(\left(-6x-\frac{2}{5}\right)^2=36x^2+\frac{24}{5}x+\frac{4}{25}\)
d) \(\left(xy^2+1\right)\left(xy^2-1\right)=x^2y^4-1\)
e) \(\left(x-y\right)^2\left(x+y\right)^2=\left(x^2-y^2\right)^2=x^4-2x^2y^2+y^4\)
f) \(\left(\frac{1}{2}x-\frac{1}{3}y-1\right)^2=\frac{1}{4}x^2+\frac{1}{9}y^2+1-\frac{1}{3}xy-x+\frac{2}{3}y\)

a) \(\left(x^2-2x+1\right)-\left(y^2+2y+1\right)\)
\(=\left(x-1\right)^2-\left(y+1\right)^2\)
\(=\left(x-y-2\right)\left(x+y\right)\)

\(3x\left(x+5\right)-\left(18+3x\right)\left(x-1\right)-1\)
\(=3x^2+15x-18x+18-3x^2+3x-1\)
\(=18-1\)
\(=17\)
\(\Rightarrow\)\(3x\left(x+5\right)-\left(18+3x\right)\left(x-1\right)-1\)không phụ thuộc vào biến
đpcm

\(\Leftrightarrow x^2-2.3.x+9+1=\left(x-3\right)^2+1\Rightarrow\hept{\begin{cases}\left(x-3\right)^2\ge0\\1>0\end{cases}}\Rightarrow\left(x-3\right)^2+1>0\)
\(\Leftrightarrow x^2-2.\frac{3}{2}.x+\frac{9}{4}+\frac{7}{4}=\left(x-\frac{3}{2}\right)^2+\frac{7}{4}\Leftrightarrow\hept{\begin{cases}\left(x-\frac{3}{2}\right)^2\ge0\\\frac{7}{4}>0\end{cases}}\Rightarrow\left(x-\frac{3}{2}\right)^2+\frac{7}{4}>0\)
\(\Leftrightarrow2.\left(x^2+xy+y^2+1\right)=x^2+2xy+y^2+x^2+y^2+2=\left(x+y\right)^2+x^2+y^2+2\)
ta có \(\left(x+y\right)^2\ge0,x^2\ge0,y^2\ge0,2>0\Rightarrow\left(x+y\right)^2+x^2+y^2+2>0\)
\(\Leftrightarrow x^2-2xy+y^2+x^2-2.1x+1+y^2+2.2.y+4+3\)\(=\left(x-y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+3\)
Ta có \(=\left(x-y\right)^2\ge0,\left(x-1\right)^2\ge0,\left(y+2\right)^2\ge0,3>0\)\(\Rightarrow=\left(x-y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+3>0\)
T i c k cho mình 1 cái nha mới bị trừ 50 đ

a)
\(x^3-5x^2+6x\\ \Leftrightarrow x\cdot\left(x^2-5x+6\right)\\ \Leftrightarrow x\cdot\left(x^2-2x-3x+6\right)\\ \Leftrightarrow x\cdot\left[x\cdot\left(x-2\right)-3\cdot\left(x-2\right)\right]\\ \Leftrightarrow x\cdot\left(x-3\right)\cdot\left(x-2\right)\)
b)
\(x^2-3xy+2y^2\\ \Leftrightarrow x^2-xy-2xy+2y^2\\ \Leftrightarrow x\cdot\left(x-y\right)-2y\cdot\left(x-y\right)\\ \Leftrightarrow\left(x-2y\right)\cdot\left(x-y\right)\)
c)
\(-4x^2+10x-4\\ \Leftrightarrow-2\cdot\left(2x^2-5x+2\right)\\ \Leftrightarrow-2\cdot\left(2x^2-x-4x+2\right)\\ \Leftrightarrow-2\cdot\left[x\cdot\left(2x-1\right)-2\cdot\left(2x-1\right)\right]\\ \Leftrightarrow-2\cdot\left(x-2\right)\cdot\left(2x-1\right)\)
d)
\(x^3+2x^2y-xy^2-2y^3\\ \Leftrightarrow x^2\cdot\left(x+2y\right)-y^2\cdot\left(x+2y\right)\\ \Leftrightarrow\left(x+2y\right)\cdot\left(x^2-y^2\right)\\ \Leftrightarrow\left(x+2y\right)\cdot\left(x+y\right)\cdot\left(x-y\right)\)

a) \(A=x^2y+y+xy^2-x\) (hẳn đề là vậy)
\(A=xy\left(x+y\right)+\left(y-x\right)\)
\(A=\left(-5\right).2\left(-5+2\right)+2+5\)
\(A=30+7=37\)
b) \(B=3x^3-2y^3-6x^2y^2+xy\)
\(B=3.\left(\frac{2}{3}\right)^3-2.\left(\frac{1}{2}\right)^3-6.\left(\frac{2}{3}\right)^2.\left(\frac{1}{2}\right)^2+\frac{2}{3}.\frac{1}{2}\)
\(B=\frac{8}{9}-\frac{1}{4}-\frac{2}{3}+\frac{1}{3}\)
\(B=\frac{11}{36}\)
c) \(C=2x+xy^2-x^2y-2y\)
\(C=2.\left(-\frac{1}{2}\right)+\left(-\frac{1}{2}\right).\left(-\frac{1}{3}\right)^2-\left(-\frac{1}{2}\right)^2.\left(-\frac{1}{3}\right)-2.\left(-\frac{1}{3}\right)\)
\(C=-1-\frac{1}{18}+\frac{1}{12}+\frac{2}{3}\)
\(C=-\frac{11}{36}\)
Mình đã làm rồi
Nhưng kết quả không giống trên loigiaihay.com
Các bạn giúp mình giải nha
a) \(\left(x^2y^2-xy+2y\right)\left(x-2y\right)\)
\(=x^3y^2-x^3y+2xy-2x^2y^3+2xy^2-4y^2\)
b) \(\left(x^2-xy+y^2\right)\left(x+y\right)\)
\(=x^3-x^2y+xy^2+y^3\)
Cái này có giống ko?