K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Chủ nhật tuần này mình tổ chức mini game Các bạn giúp mình giải 3 bài toán nhé 4 bạn nhanh nhất sẽ đc quà nhaChủ nhật nình sẽ xem bạn nào nhanh tay nhất để nhận quà nhaLàm hết nha làm từng vức một mới đc nhận quà Mình hứa Bài 1 tìm x...
Đọc tiếp

Chủ nhật tuần này mình tổ chức mini game 

Các bạn giúp mình giải 3 bài toán nhé 

4 bạn nhanh nhất sẽ đc quà nha

Chủ nhật nình sẽ xem bạn nào nhanh tay nhất để nhận quà nha

Làm hết nha làm từng vức một mới đc nhận quà 

Mình hứa 

Bài 1 tìm x biết

1/2.(2/5x-4x)+(2x+5).x=-13/2

2x^2+3(x-1).(x+1)=5x(x-1)

(5x-1).(2x-7)-(2x-3).(5x+9)

(3x+4).(5x-1)+(5x+2).(1-3x)+2=0

(5x-1).(2x+3)-3.(3x-1)=0

X^3(2x-3)-x^2(4x^2-6x+2)=0

2x(x-5)-x(3+2x)=0

X(x-1)-x^2+2x=5

8(x-2)-2(3x-4)=2

Bài 2 tính giá trị các biểu thức sau

A=2x(x-3y)-3y(x+2)-2(x^2-4xy-3y) vs x=2/3 ,y=3/4

B=3x(x-4y)-12/5y(y-5x) vs x=4,y=-5

C=(x-4).(x-2)-(x-1).(x-3) vs x=7/4

D=xy(x+y)-x^2(x+y)-y^2(x-y) vs x=3,y=2

E=(3x-1)^2+3(3x-1).(2x+1)+(2x+1)^2  x=5

F=(2x+3)^2-2(2x+3).(2x+5)+(2x+5)^2 vs x=2010

G=4x^2(5x-3y)-5x^2(4x+y) vs x=-2, y=-3

Bài 3 chứng minh các biểu thức sau ko thuộc biến

A=3x(x-5y)+(y-5x)(-3y)-3(x^2-y^2)-1

B=(3x-5).(2x+11)-(2x+3).(3x+7)

C=x(2x+1)-x^2(x+2)+(x^3-x+3)

D=z(y-x)+y(z-x)+x(y+z)

E=x(x^2+x+1)-x^2(x+1)-x+5

Thank các bạn 

nhớ chủ nhật nha 

Mình sẽ xem ai nhanh nhất 

Sau đó gửi mail cho mình để nhận quà nha

0
8 tháng 9 2016

\(\text{Tìm x:}\)

\(a.x\left(x-1\right)-3x+3x=0\)

\(x\left(x-1\right)=0\)

\(\Rightarrow\hept{\begin{cases}x=0\\x-1=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x=1\end{cases}}}\)

\(b.3x\left(x-2\right)+10-5x=0\)

\(3x^2-6x+10-5x=0\)

\(3x^2-11x+10=0\)

\(3x^2-11x=-10\)(bn xem lại đề nhé)

\(c.x^3-5x^2+x-5=0\)

\(x^3-5x^2+x=5\)

\(d.x^4-2x^3+10x^2-20x=0\)


 

8 tháng 9 2016

bài 1:phân tích thành phân tử

  a> x^2-6x-y^2+9

= (x-3)^2 -y^2

= (x-3 -y) (x-3+y)

b>x^2-xy-8x+8y

= x(x-y) - 8(x-y)

= (x-8) (x-y)

c>25-4x^2-4xy-y^2

= 5^2 - (2x + y)^2 

= (5 - 2x -y) (5 +2x+y) 

d>xy-xz-y+z

= x(y-z) - (y-z)

= (x-1) (y-z)

e>x^2-xz-yz+2xy+y^2

= (x+y)^2 - z(x+y)

= (x+y-z) (x+y)

g>x^2-4xy+4y^2-z^2-4zt-4t^2

= (x-2y)^2 - (z + 2t)^2 

= (x-2y -x-2t) (x-2y + z +2t)

bài 2:tìm X bt 

a>x.(x-1)-3x+3x=0

x (x-1) =0

\(\Rightarrow\hept{\begin{cases}x=0\\x-1=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x=1\end{cases}}}\)

Vậy x=0 và x=1

b>3x.(x-2)+10-5x=0

3x(x-2) - 5 (x-2)=0

(3x-5) (x-2) =0

\(\Rightarrow\hept{\begin{cases}3x-5=0\\x-2=0\end{cases}\Rightarrow\hept{\begin{cases}3x=5\\x=2\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{5}{3}\\x=2\end{cases}}}}\)

c>x^3-5x^2+x-5=0

x^2 (x-5) + (x-5) =0

(x^2 +1)(x-5) =0

\(\Rightarrow\hept{\begin{cases}x^2+1=0\\x-5=0\end{cases}\Rightarrow\hept{\begin{cases}x^2=-1\\x=5\end{cases}\Rightarrow}\hept{\begin{cases}x\in\varphi\\x=5\end{cases}}}\)

Vậy x=5

d>x^4-2x^3+10x^2-20x=0

x^3 (x-2) + 10x(x-2) =0 

(x^3 + 10x) (x-2) =0

x(x^2 + 10) (x-2) =0

\(\Rightarrow\hept{\begin{cases}x=0\\x^2+10=0\\x-2=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x^2=-10\\x=2\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x\in\varphi\\x=2\end{cases}}}}\)

Vậy x=0 và x=2

Chứng tỏ rằng các đa thức sau ko phụ thuộc vào biến

a) Ta có: \(A=\left(3x-5\right)\left(2x+11\right)-\left(2x+3\right)\left(3x+7\right)\)

\(=6x^2+33x-10x-55-\left(6x^2+14x+9x+21\right)\)

\(=6x^2+23x-55-6x^2-23x-21\)

=-74

Vậy: Đa thức A không phụ thuộc vào biến(đpcm)

b) Ta có: \(B=\left(x-5\right)\left(2x+3\right)-2x\left(x-3\right)+x+7\)

\(=2x^2+3x-10x-15-2x^2+6x+x+7\)

\(=-8\)

Vậy: Đa thức B không phụ thuộc vào biến(đpcm)

c) Ta có: \(C=4\left(x-6\right)-x^2\left(2+3x\right)+x\left(5x-4\right)+3x^2\left(x-1\right)\)

\(=4x-24-2x^2-3x^3+5x^2-4x+3x^3-3x^2\)

\(=-24\)

Vậy: Đa thức C không phụ thuộc vào biến(đpcm)

d) Ta có: \(D=x\left(y+z-yz\right)-y\left(z+x-zx\right)+z\left(y-x\right)\)

\(=xy+xz-xyz-yz-xy+xyz+zy-zx\)

=0

Vậy: Đa thức D không phụ thuộc vào biến(đpcm)

16 tháng 8 2016

\(xy\left(x-y\right)+yz\left(y-z\right)+zx\left(z-x\right)=x^2y-xy^2+y^2z-yz^2+z^2z-zx^2=x^2\left(y-z\right)+y^2\left(z-x\right)+z^2\left(z-y\right)\)

\(x^2\left(y-z\right)-y^2\left(x-z\right)-z^2\left(y-z\right)=\left(y-z\right)\left(x-z\right)\left(x+z\right)-y^2\left(x-z\right)=\left(x-z\right)\left(xy-yz-zx-z^2-y^2\right)\)

t cx k bt có đúng hay k đâu nha, nhớ xem kĩ lại

17 tháng 8 2016

Cảm ơn nhiều nhé =))

23 tháng 12 2019

a) \(A=5x\left(4x^2-2x+1\right)-2x\left(10x^2-5x-2\right)\)

\(A=20x^3-10x^2+5x-20x^3+10x^2+4x\)

\(A=9x\)

Thay x = 15 vào, ta có: 

\(A=9.15=135\)

b) \(B=5x\left(x-4y\right)-4y\left(y-5x\right)\)

\(B=5x^2-20xy-4y^2+20xy\)

\(B=5x^2-4y\)

Thay \(x=-\frac{1}{5};y=-\frac{1}{2}\) vào, ta có: 

\(B=5.\left(-\frac{1}{5}\right)^2-4.\left(-\frac{1}{2}\right)=\frac{11}{5}\)

c) \(C=6xy\left(xy-y^2\right)-8x^2\left(x-y^2\right)-5y^2\left(x^2-xy\right)\)

\(C=6x^2y^2-6xy^3-8x^3+8x^2y^2-5x^2y^2+5xy^3\)

\(C=9x^2y^2-xy^3-8x^3\)

Thay \(x=\frac{1}{2};y=2\) vào, ta có:

\(C=9.\left(\frac{1}{2}\right)^2.2^2-\frac{1}{2}.2^3-8.\left(\frac{1}{2}\right)^3=4\)

d) \(D=\left(3x+5\right)\left(2x-1\right)+\left(4x-1\right)\left(3x+2\right)\)

\(D=6x^2-3x+10x-5+12x^2+8x-3x-2\)

\(D=18x^2+12x-7\)

Ta có: \(\left|2\right|=\orbr{\begin{cases}x=-2\\x=2\end{cases}}\)

+) Với x = -2

\(D=18.\left(-2\right)^2+12.\left(-2\right)-7=41\)

+) Với x = 2

\(D=18.2^2+12.2-7=89\)

13 tháng 6 2018

A = 2x2 - 6xy - 3xy - 6y - 2x2 + 8xy + 6y

   = - xy

  = \(\frac{2}{3}\)\(x\)\(\frac{3}{4}\)

  = \(\frac{1}{2}\)

mk đang bận mấy câu kia tương tự nha