\(\le\) 0

c)/x-8/+/y+2/=2

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\left|x+25\right|+\left|-y+3\right|=0\)

\(\Rightarrow\hept{\begin{cases}x+25=0\\3-y=0\end{cases}\Rightarrow\hept{\begin{cases}x=-25\\y=3\end{cases}}}\)

10 tháng 2 2019

\(\frac{x-2}{4}=\frac{-9}{2-x}\)

\(\Rightarrow\frac{x-2}{4}=\frac{9}{x-2}\)

\(\Rightarrow\left(x-2\right)^2=36\)

\(\Rightarrow\left(x-2\right)^2=\left(\pm6\right)^2\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=6\\x-2=-6\end{cases}\Leftrightarrow\orbr{\begin{cases}x=8\\x=-4\end{cases}}}\)

\(\frac{x}{15}=\frac{3}{y}\)

\(\Rightarrow xy=45\)

\(\Rightarrow x;y\inƯ\left(45\right)=\left\{\pm1;\pm3;\pm5;\pm9;\pm15;\pm45\right\}\)

Xét bảng 

x1(loại)-13(loại)-35(loại)-545-45(loại)15-15(loại)9-9(loại)
y45(loại)-4515(loại)-159(loại)-91-1(loại)3-3(loại)5-5(loại)

Vậy.......................................

d;Áp dụng tích chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{4}=\frac{y}{3}=\frac{x+y}{4+3}=\frac{14}{7}=2\)

\(\Rightarrow x=4.2=8\)

     \(y=3.2=6\)

11 tháng 8 2020

khó quá

11 tháng 8 2020

a. Vì \(\left|x-y-5\right|\ge0\forall x;y;2019\left|y-3\right|^{2020}\ge0\forall y\)

\(\Rightarrow\left|x-y-5\right|+2019\left|y-3\right|^{2020}\ge0\)

Dấu "=" xảy ra \(\Leftrightarrow\orbr{\begin{cases}\left|x-y-5\right|=0\\2019\left|y-3\right|^{2020}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x-y-5=0\\y-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x-y=5\\y=3\end{cases}}\)

b. \(2\left(x-5\right)^4\ge0\forall x;5\left|2y-7\right|^5\ge0\forall y\)

\(\Rightarrow2\left(x-5\right)^4+5\left|2y-7\right|^5\ge0\)

Dấu "=" xảy ra \(\Leftrightarrow\orbr{\begin{cases}2\left(x-5\right)^4=0\\5\left|2y-7\right|^5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x-5=0\\2y-7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=5\\y=\frac{7}{2}\end{cases}}\)

2 tháng 5 2020

kết quả thì mình ko chắc

a) Ta có : \(\left|x-2\right|\ge0\forall x\)

                 \(\left|x+y-10\right|\ge0\forall x\)

Nên : \(\left|x-2\right|+\left|x+y-10\right|\ge0\forall x\)

Mà đề bài cho \(\left|x-2\right|+\left|x+y-10\right|\le0\)

Nên : \(\hept{\begin{cases}x-2=0\\x+y-10=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\2+y-10=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\y=8\end{cases}}}\)

Vậy x = 2 ; y = 8 

Ta có : \(\left|x-2\right|\ge0\forall x\)

               \(\left|x.y-6\right|\ge0\forall x,y\)

Mà : \(\left|x-2\right|+\left|x.y-6\right|=0\)

Nên : pt \(\Leftrightarrow\hept{\begin{cases}x-2=0\\x.y-6=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\x.y=6\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\2y=6\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\y=3\end{cases}}}\)

11 tháng 1 2018

a)
\(\left|x\right|-2\left|x\right|+3\left|x\right|=16+6\left|x\right|-19\)
\(\left|x\right|-2\left|x\right|+3\left|x\right|-6\left|x\right|=16-19\)
\(\left|x\right|.\left(1-2+3-6\right)=-3\)
\(\left|x\right|.\left(-4\right)=-3\)
\(\left|x\right|=\dfrac{3}{4}\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{3}{4}\\x=\dfrac{3}{4}\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=-\dfrac{3}{4}\\x=\dfrac{3}{4}\end{matrix}\right.\)



b,
2.(|x| - 5) - 15 = 9
\(2.\left(\left|x\right|-5\right)=9+15\)
\(2.\left(\left|x\right|-5\right)=24\)
\(\left|x\right|-5=24:2\)
\(\left|x\right|-5=12\)
\(\left|x\right|=12+5\)
\(\left|x\right|=17\)
\(\Rightarrow\left[{}\begin{matrix}x=-17\\x=17\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=-17\\x=17\end{matrix}\right.\)

c,
|8 - 2x| + |4y - 16| = 0
\(\Rightarrow\left\{{}\begin{matrix}\left|8-2x\right|=0\\\left|4y-16\right|=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}8-2x=0\\4y-16=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2x=8\\4y=16\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=4\\y=4\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=4\\y=4\end{matrix}\right.\)


d,

|x - 14| + |2y - x| = 0
\(\Rightarrow\left\{{}\begin{matrix}\left|x-14\right|=0\\\left|2y-x\right|=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x-14=0\\2y-x=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=14\\2y=x\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=14\\2y=14\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=14\\y=7\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=14\\y=7\end{matrix}\right.\)

2.Tìm x, y, z biết

a,
2.|3x| + |y + 3| + |z - y| = 0
\(\Rightarrow\left\{{}\begin{matrix}2.\left|3x\right|=0\\\left|y+3\right|=0\\\left|z-y\right|=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left|3x\right|=0\\y+3=0\\z-y=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}3x=0\\y=-3\\z=y\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=0\\y=-3\\z=-3\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=0\\y=-3\\z=-3\end{matrix}\right.\)

b, (x - 3y)2 + | y + 4|= 0
\(\Rightarrow\left\{{}\begin{matrix}\left(x-3y\right)2=0\\\left|y+4\right|=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x-3y=0\\y+4=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=3y\\y=-4\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=3.\left(-4\right)\\y=-4\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=-12\\y=-4\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=-12\\y=-4\end{matrix}\right.\)

3 tháng 2 2016

\(a.\frac{2}{x}=\frac{x}{8}\Rightarrow x^2=2.8=16\Rightarrow x^2=4^2=\left(-4\right)^2\Rightarrow x\in\left\{-4;4\right\}\)

\(b.\frac{-3}{x}=\frac{y}{2}\Rightarrow x.y=-3.2=-6\Rightarrow\text{Ta có bảng sau:}\)

x-6-3-2-11236
y1236-6-3-2-1

Mà theo đề: x < 0 < y

Vậy các cặp (x; y) thỏa là: (-6; 1); (-3; 2); (-2; 3); (-1; 6).

\(c.\frac{-4}{8}=-\frac{1}{2}=\frac{5}{-10}=\frac{x}{-10}=-\frac{7}{14}=\frac{-7}{y}=\frac{12}{-24}=\frac{z}{-24}\)

=> x = 5; y = 14; z = 12.

14 tháng 8 2019

a, th1 : 2- x +2=x

<=> X=2

Th2: -2 +x +2= x

<=> X có vô sốnghiệm

14 tháng 8 2019

B1: a, |2 - x| + 2 = x

=> |2 - x| = x - 2

Dễ thấy (2 - x) và số đối của (x - 2)

=> |2 - x| = x - 2

=> 2 - x ≤ 0

=> x  ≥ 2

b, Điều kiện: x + 7 ≥ 0 => x  ≥ -7

Ta có: |x - 9| = x + 7

\(\Rightarrow\orbr{\begin{cases}x-9=x+7\\x-9=-x-7\end{cases}\Rightarrow}\orbr{\begin{cases}0x=16\left(loai\right)\\2x=2\end{cases}\Rightarrow x=1}\left(t/m\right)\)

a: |3x+2y|+|4y-1|<=0

=>3x+2y=0 và 4y-1=0

=>y=1/4 và x=-1/6

b: |x+y-7|+|xy-10|<=0

=>x+y-7=0 và xy-10=0

=>x+y=7 và xy=10

hay \(\left(x,y\right)\in\left\{\left(2;5\right);\left(5;2\right)\right\}\)

c: |x-y-2|+|y+3|=0

=>x-y-2=0 và y+3=0

=>y=-3 và x-y=2

=>y=-3 và x=2+y=2-3=-1