K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2021

\(x^2+4xy-4z^2+4y^2\)

\(=x^2+4xy+4y^2-4z^2\)

\(=\left(x+2y\right)^2-4z^2\)

\(=\left(x+2y-2z\right)\left(x+2y+2z\right)\)

\(x^2+2x-15\)

\(=x^2+2x+1-16\)

\(=\left(x+1\right)^2-16\)

\(=\left(x+1-4\right)\left(x+1+4\right)\)

\(=\left(x-3\right)\left(x+5\right)\)

27 tháng 9 2019

special thing ican pial on the raint day, they can say (x2) we all crazy. dhcuihcue8uf89efefidjmcdc kf h fhv8y8gyu8r9gynw98yfnryfudfhsjcndskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkskuihhhhuhmillion dream we gona makenduxcjsdfbc dfgvefvg efhvbidhccccccccccccccccccbjhsdbcshb hjcb snkz .

answer= foethe www  

27 tháng 9 2019

Bộ bạn ko biết ghi đề bài hả xuống tiểu học đi nha

16 tháng 9 2018

a, \(P=2x^2+5y^2+4xy+8x-4y+15\)

\(=\left(x+2y\right)^2+\left(x+4\right)^2+\left(y-2\right)^2-5\)\(\ge-5\)

Dấu "="xảy ra khi:\(\hept{\begin{cases}\left(x+2y\right)^2=0\\\left(x+4\right)^2=0\\\left(y-2\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-4\\y=2\end{cases}}\)

Vậy...

b, \(C=2x^2+4xy+4y^2-3x-1\)

\(=\left(x+2y\right)^2+\left(x-\frac{3}{2}\right)^2-\frac{5}{4}\ge-\frac{5}{4}\)

sau đó giải tương tự câu a nhé

23 tháng 8 2020

?????

17 tháng 9 2018

a) \(A=9x^2-6x+3\)

\(A=\left(3x\right)^2-2.3x+1+2\)

\(A=\left(3x-1\right)^2+2\)

\(\left(3x-1\right)^2\ge0\) với mọi x

\(\Rightarrow\left(3x-1\right)^2+2\ge2\) với mọi x

\(\Rightarrow Amin=2\Leftrightarrow3x-1=0\)

\(\Rightarrow3x=1\)

\(\Rightarrow x=\dfrac{1}{3}\)

Vậy giá trị nhỏ nhất của biểu thức là 2 khi x = 1/3

b) \(B=x^2-3x\)

\(B=x^2-2.x.\dfrac{3}{2}+\dfrac{9}{4}-\dfrac{9}{4}\)

\(B=\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{4}\)

\(\left(x-\dfrac{3}{2}\right)^2\ge0\) với mọi x

\(\Rightarrow\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{4}\ge-\dfrac{9}{4}\) với mọi x

\(\Rightarrow Bmin=-\dfrac{9}{4}\Leftrightarrow x-\dfrac{3}{2}=0\)

\(\Rightarrow x=\dfrac{3}{2}\)

Vậy giá trị nhỏ nhất của biểu thức là -9/4 khi x = 3/2

c) \(C=x^2+8x+10\)

\(C=x^2+2.x.4+16-6\)

\(C=\left(x+4\right)^2-6\)

\(\left(x+4\right)^2\ge0\) với mọi x

\(\Rightarrow\left(x+4\right)^2-6\ge-6\) với mọi x

\(\Rightarrow Cmin=-6\Leftrightarrow x+4=0\)

\(\Rightarrow x=-4\)

Vậy giá trị nhỏ nhất của biểu thức là -6 khi x = -4

d) \(D=x^2-2x+15+y^2+3y\)

\(D=x^2-2x+1+y^2+2.y.\dfrac{3}{2}+\dfrac{9}{4}-\dfrac{9}{4}+14\)

\(D=\left(x-1\right)^2+\left(y+\dfrac{3}{2}\right)^2+\dfrac{47}{4}\)

\(\left(x-1\right)^2\ge0\) với mọi x

\(\left(y+\dfrac{3}{2}\right)^2\ge0\) với mọi y

\(\Rightarrow\left(x-1\right)^2+\left(y+\dfrac{3}{2}\right)^2\ge0\) với mọi x,y

\(\Rightarrow\left(x-1\right)^2+\left(y+\dfrac{3}{2}\right)^2+\dfrac{47}{4}\ge\dfrac{47}{4}\) với mọi x,y

\(\Rightarrow Dmin=\dfrac{47}{4}\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y+\dfrac{3}{2}=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=1\\y=-\dfrac{3}{2}\end{matrix}\right.\)

Vậy giá trị của biểu thức là 47/4 khi x = 1 và y = -3/2

e) \(E=2x^2+4xy+8x+5y^2-4y-100\)

\(E=\left(x^2+4xy+4y^2\right)+\left(x^2+8x+16\right)+\left(y^2-4y+4\right)-120\)

\(E=\left(x+2y\right)^2+\left(x+4\right)^2+\left(y-2\right)^2-120\)

\(\left(x+2y\right)^2\ge0\) với mọi x,y

\(\left(x+4\right)^2\ge0\) với mọi x

\(\left(y-2\right)^2\ge0\) với mọi y

\(\Rightarrow\left(x+2y\right)^2+\left(x+4\right)^2+\left(y-2\right)^2\ge0\) với mọi x,y

\(\Rightarrow\left(x+2y\right)^2+\left(x+4\right)^2+\left(y-2\right)^2-120\ge-120\) với mọi x,y

\(\Rightarrow Emin=-120\Leftrightarrow\left\{{}\begin{matrix}x+2y=0\\x+4=0\\y-2=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=-4\\y=2\end{matrix}\right.\)

Vậy giá trị nhỏ nhất của biểu thức là -120 khi x = -4 ; y = 2

f) \(F=x^2-6xy+26+10y^2-10y\)

\(F=x^2-6xy+9y^2+y^2-10y+25+1\)

\(F=\left(x^2-6xy+9y^2\right)+\left(y^2-10y+25\right)+1\)

\(F=\left(x-3y\right)^2+\left(y-5\right)^2+1\)

\(\left(x-3y\right)^2\ge0\) với mọi x,y

\(\left(y-5\right)^2\ge0\) với mọi y

\(\Rightarrow\left(x-3y\right)^2+\left(y-5\right)^2\ge0\) với mọi x,y

\(\Rightarrow\left(x-3y\right)^2+\left(y-5\right)^2+1\ge1\) với mọi x,y

\(\Rightarrow Fmin=1\Leftrightarrow\left\{{}\begin{matrix}x-3y=0\\y-5=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=3y\Rightarrow x=15\\y=5\end{matrix}\right.\)

Vậy giá trị của biểu thức là 1 khi x = 15 và y = 5

1 tháng 11 2018

\(3x^2-2x-1\)

\(=3x^2-3x+x-1\)

\(=3x.\left(x-1\right)+\left(x-1\right)\)

\(=\left(x-1\right).\left(3x+1\right)\)

1 tháng 11 2018

\(9x^2-4y^2-4xy-x^2\)

\(=\left(3x\right)^2-\left(2y+x\right)^2\)

\(=\left(2x-2y\right)\left(4x+2y\right)\)

\(=4.\left(x-y\right)\left(2x+y\right)\)

9 tháng 8 2017

a) \(M=10x^2+6y+4y^2+4xy+2\)

\(=\left(10x^2+4xy+\dfrac{2}{5}y^2\right)+\left(\dfrac{18}{5}y^2+6y+\dfrac{5}{2}\right)-\dfrac{1}{2}\)

\(=10\left(x^2+\dfrac{2}{5}xy+\dfrac{1}{25}y^2\right)+\dfrac{18}{5}\left(y^2+\dfrac{5}{3}y+\dfrac{25}{36}\right)-\dfrac{1}{2}\)

\(=10\left(x+\dfrac{1}{5}y\right)^2+\dfrac{18}{5}\left(y+\dfrac{5}{6}\right)^2-\dfrac{1}{2}\ge-\dfrac{1}{2}\)

Đẳng thức xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{5}y=0\\y+\dfrac{5}{6}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{6}\\y=-\dfrac{5}{6}\end{matrix}\right.\)

b) \(H=-x^2+2xy-4y^2+2x+10y-8\)

\(=-x^2+2x\left(y+1\right)-\left(y^2+2y+1\right)-\left(3y^2-12y+7\right)\)

\(=-x^2+2x\left(y+1\right)-\left(y+1\right)^2-3\left(y^2-4y+4\right)+5\)

\(=-\left(x-y-1\right)^2-3\left(y-2\right)^2+5\le5\)

Đẳng thức xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-y-1=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)

c) \(K=2x^2+2xy-2x+2xy+y^2\)

bn xem lại cái đề nhé, sao lại có 2 lần 2xy

9 tháng 8 2017

Câu c đúng đề mà

2 tháng 7 2017

a, Đề sai bạn ơi phải là cộng 16 chứ không phải cộng 4

b,B= (x-2y+1)^2

2 tháng 7 2017

thế còn c với d