Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2, TC: \(\frac{5x^2-4x+4}{x^2}=\frac{4x^2+x^2-4x+4}{x^2}\)\(=\frac{4x^2}{x^2}+\frac{\left(x-2\right)^2}{x^2}=4+\frac{\left(x-2\right)^2}{x^2}\)
Ta có \(\frac{\left(x-2\right)^2}{x^2}\ge0\forall x\left(x\ne0\right)\)\(\Rightarrow4+\frac{\left(x-2\right)^2}{x^2}\ge4\)
Vậy GTNN của A là 4 tại \(\frac{\left(x-2^2\right)}{x^2}=0\Rightarrow x=2\)
BÀI 1:
a) \(ĐKXĐ:\) \(\hept{\begin{cases}x-2\ne0\\x+2\ne0\end{cases}}\) \(\Leftrightarrow\)\(\hept{\begin{cases}x\ne2\\x\ne-2\end{cases}}\)
b) \(A=\left(\frac{2}{x-2}-\frac{2}{x+2}\right).\frac{x^2+4x+4}{8}\)
\(=\left(\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\right).\frac{\left(x+2\right)^2}{8}\)
\(=\frac{2x+4-2x+4}{\left(x-2\right)\left(x+2\right)}.\frac{\left(x+2\right)^2}{8}\)
\(=\frac{x+2}{x-2}\)
c) \(A=0\) \(\Rightarrow\)\(\frac{x+2}{x-2}=0\)
\(\Leftrightarrow\) \(x+2=0\)
\(\Leftrightarrow\)\(x=-2\) (loại vì ko thỏa mãn ĐKXĐ)
Vậy ko tìm đc x để A = 0
p/s: bn đăng từng bài ra đc ko, mk lm cho
\(\frac{1}{x^2+3x+2}+\frac{1}{x^2+5x+6}+...+\frac{1}{x^2+15x+56}=\frac{1}{14}\)
\(\Leftrightarrow\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+...+\frac{1}{\left(x+7\right)\left(x+8\right)}=\frac{1}{14}\)
\(\Leftrightarrow\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+...+\frac{1}{x+7}-\frac{1}{x+8}=\frac{1}{14}\)
\(\Leftrightarrow\frac{1}{x+1}-\frac{1}{x+8}=\frac{1}{14}\)
Làm nốt
2/
\(T=8x^2-4x+\frac{1}{4x^2}+15\)
\(=\left(4x^2-4x+1\right)+\left(4x^2+\frac{1}{4x^2}-2\right)+16\)
\(=\left(2x-1\right)^2+\left(\frac{4x^2-1}{2x}\right)^2+16\ge16\)
Câu 1: Tự làm :D
Câu 2: \(A=\left(x-y\right)^2+\left(y-2\right)^2+1\ge1\)
Đẳng thức xảy ra khi x = y = 2
Vậy...
Câu 3:
a) Trùng với câu 2
b) ĐK:x khác -1
\(B=\frac{3\left(x+1\right)}{x^2\left(x+1\right)+\left(x+1\right)}=\frac{3\left(x+1\right)}{\left(x^2+1\right)\left(x+1\right)}\)
\(=\frac{3}{x^2+1}\le\frac{3}{0+1}=3\)
Đẳng thức xảy ra khi x = 0
Làm nốt cái câu 1 và đầy đủ cái câu 2:v
\(\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{1}{x^2+13x+42}=\frac{1}{18}\)
\(\Leftrightarrow\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+7}=\frac{1}{18}\)
\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\)
Làm nốt nha.Lười quá:((
2
\(A=x^2-2xy+2y^2-4y+5\)
\(A=\left(x-2xy+y^2\right)+\left(y^2-4y+4\right)+1\)
\(A=\left(x-y\right)^2+\left(y-2\right)^2+1\)
\(A\ge1\)
Dấu "=" xảy ra tại \(x=y=2\)
Bài 2:đk x khác -1 đặt luôn x+1=y y khác 0
\(\Leftrightarrow k\left(y+1\right)-3k+3=y\Leftrightarrow\left(k-1\right)y-2k+3=0\) (*)
với k=1 => 0.y-2+3=1=0 vô nghiệm
với k khác 1 ta có \(y=\frac{2k-3}{k-1}\)
Đk x<0=> y<1
\(\frac{2k-3}{k-1}< 1\Leftrightarrow\frac{2k-3-k+1}{k-1}=\frac{k-2}{k-1}< 0\Rightarrow1< k< 2\)
Bài 3: ĐK x khác -1
\(4-t=\frac{2}{x+1}\Leftrightarrow\left(4-t\right)\left(x+1\right)=2\) (*)
Với t=4 có 0.(x+1)=2 => vô nghiệm
với t khác 4 => (x+1)=2/(4-t)=> x=2/(4-t)-1
nghiệm dương => \(\frac{2}{4-t}-1>0\Rightarrow\frac{2+t-4}{4-t}=\frac{t-2}{4-t}>0\Rightarrow2< t< 4\)
Bổ xung: với bài này không ảnh hửng đến đáp số
Bài 2: cần giải thêm
\(\frac{2k-3}{k-1}\ne0\Rightarrow k\ne\frac{3}{2}\)
Bài 3 giải thêm
\(\frac{t-2}{4-t}\ne-1\)
Bài 2: kết luận nhầm : \(1< k< 2\)
Bài 3:
\(\left\{\begin{matrix}x\ne1\\\left(4-t\right)\left(x+1\right)=2\Leftrightarrow4+4x-tx-t=2\end{matrix}\right.\)
\(\Leftrightarrow\left(4-t\right)x=t-2\)
\(\Leftrightarrow\left\{\begin{matrix}t=4\\0.x=2\rightarrow Vo.N_0\end{matrix}\right.\)
\(\left\{\begin{matrix}t\ne4\\x=\frac{t-2}{4-t}\end{matrix}\right.\) \(\Rightarrow\left\{\begin{matrix}x>0\\\frac{t-2}{4-t}>0\end{matrix}\right.\)\(\Rightarrow2< t< 4\)
Kết luận: \(2< t< 4\)
Bài 1+1
\(\frac{k\left(x+2\right)-3\left(k-1\right)}{x+1}=1\Leftrightarrow k\left(x+2\right)-3\left(k-1\right)=\left(x+2\right)-1\) Đặt:\(\left\{\begin{matrix}x+2=y\\k-1=t\\x< 0\Rightarrow y< 2\end{matrix}\right.\)
\(\Leftrightarrow ky-y=3\left(k-1\right)-1\Leftrightarrow ty=3t-1\)(1)
\(\left\{\begin{matrix}t=0\Rightarrow k=1\\\left(1\right)\Leftrightarrow0.y=-1\Rightarrow voN_o\end{matrix}\right.\)
\(\left\{\begin{matrix}t\ne0\Rightarrow k\ne1\\y=\frac{3t-1}{t}\end{matrix}\right.\) \(\Leftrightarrow\left\{\begin{matrix}y< 2\\\frac{3t-1}{t}< 2\end{matrix}\right.\)\(\Leftrightarrow\frac{3t-1-2t}{t}< 0\) \(\Leftrightarrow\frac{t-1}{t}< 0\)\(\Leftrightarrow0< t< 1\) \(\Rightarrow-1< k< 0\)
Kết luận: \(-1< k< 0\)