
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


1) \(\frac{1}{2}=\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)\(\Leftrightarrow\)\(x+y\ge8\)
\(\frac{1}{2}=\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}\)\(\Leftrightarrow\)\(xy=2\left(x+y\right)\ge16\)
\(A=\sqrt{x}+\sqrt{y}\ge2\sqrt[4]{xy}\ge2\sqrt[4]{16}=4\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=4\)
2) \(B=\sqrt{3x-5}+\sqrt{7-3x}\ge\sqrt{3x-5+7-3x}=\sqrt{2}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\orbr{\begin{cases}x=\frac{5}{3}\\x=\frac{7}{3}\end{cases}}\)
\(B=\sqrt{3x-5}+\sqrt{7-3x}\le\frac{3x-5+1+7-3x+1}{2}=2\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=2\)

\(A=x^2-3x+2y^2+y-1\)
\(=\left(x^2-3x+\frac{9}{4}\right)+\left(2y^2+y+\frac{1}{8}\right)-\frac{27}{8}\)
\(=\left(x-\frac{3}{2}\right)^2+2\left(y+\frac{1}{4}\right)^2-\frac{27}{8}\ge\frac{27}{8}\)


\(P=x^2+3x+y^2+3y+\frac{9}{x^2+y^2+1}\)
\(=x^2+y^2+1+\frac{9}{x^2+y^2+1}+3x+3y-1\)
\(\ge2.3.\frac{\sqrt{x^2+y^2+1}}{\sqrt{x^2+y^2+1}}+2.3.\sqrt{xy}-1\)
\(=6+6-1=11\)
Dấu = xảy ra khi x = y = 1

\(1,A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)
\(\ge\frac{4}{\left(x+y^2\right)}+\frac{1}{\frac{\left(x+y\right)^2}{2}}\ge\frac{4}{1}+\frac{2}{1}=6\)
Dấu "=" <=> x= y = 1/2
\(2,A=\frac{x^2+y^2}{xy}=\frac{x}{y}+\frac{y}{x}=\left(\frac{x}{9y}+\frac{y}{x}\right)+\frac{8x}{9y}\ge2\sqrt{\frac{x}{9y}.\frac{y}{x}}+\frac{8.3y}{9y}\)
\(=2\sqrt{\frac{1}{9}}+\frac{8.3}{9}=\frac{10}{3}\)
Dấu "=" <=> x = 3y
\(A=x^2-3x+y^2+y-1\)
\(=x^2-3x+y^2+y-\frac{9+1-14}{4}\)
\(=\left(x^2-3x+\frac{9}{4}\right)+\left(y^2+y+\frac{1}{4}\right)-\frac{7}{2}\)
\(=\left(x-\frac{3}{2}\right)^2+\left(y+\frac{1}{2}\right)^2-\frac{7}{2}\)
Dễ thấy: \(\left(x-\frac{3}{2}\right)^2\ge0;\left(y+\frac{1}{2}\right)^2\ge0\)
\(\Rightarrow\left(x-\frac{3}{2}\right)^2+\left(y+\frac{1}{2}\right)^2\ge0\)
\(\Rightarrow\left(x-\frac{3}{2}\right)^2+\left(y+\frac{1}{2}\right)^2-\frac{7}{2}\ge-\frac{7}{2}\)
Xảy ra khi \(\left(x-\frac{3}{2}\right)^2=0;\left(y+\frac{1}{2}\right)^2=0\Rightarrow x=\frac{3}{2};y=-\frac{1}{2}\)