
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



P = 3x + 2y + 6/x + 8/y
P = (3x/2 + 6/x) + (3x/2 + 3y/2) + (y/2 + 8/y)
Ta có 3x/2 + 6/x >= 2.căn (3x/2.6/x) = 6
dấu = xảy ra khi 3x/2 = 6/x <=> x = 2
3x/2 + 3y/2 = 3/2.(x+y) >= 3/2.6 = 9
dấu = xảy ra khi x + y = 6
y/2 + 8/y >= 2.căn (y/2.8/y) = 4
Dấu = xảy ra khi y/2 = 8/y <=> y = 4
Vậy P >= 6 + 9 + 4 <=> P > = 19
Dấu = xảy ra khi x = 2 và y = 4
=> P min = 19

\(2A=6x+4y+\frac{12}{x}+\frac{16}{y}=3x+\frac{12}{x}+y+\frac{16}{y}+3x+3y\)
Áp dụng bất đẳng thức cô si cho 2 số dương, ta có:
\(3x+\frac{12}{x}\ge2.\sqrt{36}=12\)
\(y+\frac{16}{y}\ge2\sqrt{16}=8\)
Lại có\(x+y\ge6\Rightarrow3x+3y\ge18\)
Vậy \(2A\ge12+8+18\Leftrightarrow2A\ge38\Leftrightarrow A\ge19\) \(a=19\Leftrightarrow x=2;y=4\)

\(A=x^2-3x+y^2+y-1\)
\(=x^2-3x+y^2+y-\frac{9+1-14}{4}\)
\(=\left(x^2-3x+\frac{9}{4}\right)+\left(y^2+y+\frac{1}{4}\right)-\frac{7}{2}\)
\(=\left(x-\frac{3}{2}\right)^2+\left(y+\frac{1}{2}\right)^2-\frac{7}{2}\)
Dễ thấy: \(\left(x-\frac{3}{2}\right)^2\ge0;\left(y+\frac{1}{2}\right)^2\ge0\)
\(\Rightarrow\left(x-\frac{3}{2}\right)^2+\left(y+\frac{1}{2}\right)^2\ge0\)
\(\Rightarrow\left(x-\frac{3}{2}\right)^2+\left(y+\frac{1}{2}\right)^2-\frac{7}{2}\ge-\frac{7}{2}\)
Xảy ra khi \(\left(x-\frac{3}{2}\right)^2=0;\left(y+\frac{1}{2}\right)^2=0\Rightarrow x=\frac{3}{2};y=-\frac{1}{2}\)

1) \(\frac{1}{2}=\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)\(\Leftrightarrow\)\(x+y\ge8\)
\(\frac{1}{2}=\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}\)\(\Leftrightarrow\)\(xy=2\left(x+y\right)\ge16\)
\(A=\sqrt{x}+\sqrt{y}\ge2\sqrt[4]{xy}\ge2\sqrt[4]{16}=4\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=4\)
2) \(B=\sqrt{3x-5}+\sqrt{7-3x}\ge\sqrt{3x-5+7-3x}=\sqrt{2}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\orbr{\begin{cases}x=\frac{5}{3}\\x=\frac{7}{3}\end{cases}}\)
\(B=\sqrt{3x-5}+\sqrt{7-3x}\le\frac{3x-5+1+7-3x+1}{2}=2\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=2\)
\(A=x^2-3x+2y^2+y-1\)
\(=\left(x^2-3x+\frac{9}{4}\right)+\left(2y^2+y+\frac{1}{8}\right)-\frac{27}{8}\)
\(=\left(x-\frac{3}{2}\right)^2+2\left(y+\frac{1}{4}\right)^2-\frac{27}{8}\ge\frac{27}{8}\)