K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a,7x=5y

=x/5=y/7

=x+y/5+7

=24/12

=2

b,x/2=y/3=z/5

=(x/2)3=(y/3)3=(z/5)3

=xyz/2.3.5

=-30/30

=-1

c,6x=4y=3z

=6x/12=4y/12=3z/12

=x/2=y/3=z/4

=x+y+z/2+3+4

=18/9

=2

k mik nha bn ^_^

\(\dfrac{x}{y}=\dfrac{2}{5}\rightarrow\dfrac{x}{2}=\dfrac{y}{5}\)

\(\dfrac{y}{z}=\dfrac{5}{3}\rightarrow\dfrac{y}{5}=\dfrac{z}{3}\)

Ta có: \(\dfrac{x}{2}=\dfrac{y}{5},\dfrac{y}{5}=\dfrac{z}{3}\rightarrow\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{3}\rightarrow\dfrac{2x}{4}=\dfrac{y}{5}=\dfrac{3z}{9}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

`(2x)/4=y/5=(3z)/9=(2x-y+3z)/(4-5+9)=16/8=2`

`-> x/2=y/5=z/3=2`

`-> x=2*2=4, y=2*5=10, z=2*3=6`

 

`x/5=y/3 -> x/25=y/15`

`y/5=z/4 -> y/15=z/12`

`x/25=y/15, y/15=z/12`

`-> x/25=y/15=z/12`

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

`x/25=y/15=z/12=(x-y+z)/(25-15+12)=22/22=1`

`-> x/25=y/15=z/12=1`

`-> x=25, y=15, z=12`

 

a: x/y=2/5

=>x/2=y/5

y/z=5/3

=>y/5=z/3

=>x/2=y/5=z/3

Áp dụng tính chất của DTSBN, ta được:

\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{3}=\dfrac{2x-y+3z}{2\cdot2-5+3\cdot3}=\dfrac{16}{8}=2\)

=>x=4; y=10; z=6

b: x/5=y/3

=>x/25=y/15

y/5=z/4

=>y/15=z/12

=>x/25=y/15=z/12

Áp dụng tính chất của DTSBN, ta được:

\(\dfrac{x}{25}=\dfrac{y}{15}=\dfrac{z}{12}=\dfrac{x-y+z}{25-15+12}=1\)

=>x=25; y=15; z=12

6 tháng 9 2017

6x = 4y suy ra x/4 = y/6 <=> x/12 = y/18 (1)

4y = 3z suy ra y/3 = z/4 <=> y/18 = z/24 (2)

Từ (1) và (2) suy ra:

x/12 = y/18 = z/24 = (x+y+z)/(12+18+24) = 18/54m = 1/3

Vậy: x = 12 : 3 = 4

y = 18 : 3 = 6

z = 24 : 3 = 8 

b)3 x = 2y => x/2 =y/3

2y=z=>y/1=z/2=>y/3 = z/6

x + y + z/2 + 3 + 6 = 99/11 = 9

x = 18 ; y = 27 ;  z  =  54 

8 tháng 12 2019

1/

  Ta có

   \(6x=4y=3z\Rightarrow\frac{6x}{12}=\frac{4y}{12}=\frac{3z}{12}\)

                                \(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)

  Theo tính chất của dãy tỉ số bằng nhau ta có

             \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{2+3+4}=\frac{18}{9}=2\)

Do đó

 \(\frac{x}{2}=2\Rightarrow x=4\)

\(\frac{y}{3}=2\Rightarrow y=6\)

\(\frac{z}{4}=2\Rightarrow z=8\)

   vậy x=4 ; y=6 ; z=8.

29 tháng 7 2015

\(x:y:z=3:5;\left(-2\right)\text{ hay }\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}\)

\(\text{áp dụng tính chất của dãy tỉ số bằng nhau ta có:}\)

\(\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}=\frac{5x-y+3z}{5.3-5+3.\left(-2\right)}=\frac{-16}{4}=-4\)

\(\text{Suy ra : }\frac{x}{3}=-4\Rightarrow x=-4.3=-12\)

\(\frac{y}{5}=-4\Rightarrow y=-4.5=-20\)

\(\frac{z}{-2}=-4\Rightarrow z=\left(-4\right)\left(-2\right)=8\)

24 tháng 12 2020

theo đề bài,ta có:

x/3 = y/5 = -z/2 và 5x - y + 3z = -16

Áp dụng tính chất bằng nhau của dãy tỉ số, ta có :

x/3 = y/5 = -z/2 = (5x - y + 3z) / (5.3 - 5 + 3.2) = -16 / 16 = -1

Suy ra:

x/3 = -1 => x = -1.3 = -3

y/5 = -1 => y = -1.5 = -5

-z/2 = -1 => -z = -1.2 = -2 => z = 2

Vậy x = -3 ; y = -5 ; z = 2

9 tháng 1 2024

a) Đặt: \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=k\)

\(\Rightarrow\left\{{}\begin{matrix}x=2k\\y=3k\\z=4k\end{matrix}\right.\) 

Ta có: \(x^2+3y^2-2z^2=-16\)

\(\Rightarrow\left(2k\right)^2+3\cdot\left(3k\right)^2-2\cdot\left(4k\right)^2=-16\)

\(\Rightarrow4k^2+3\cdot9k^2-2\cdot16k^2=-16\)

\(\Rightarrow4k^2+27k^2-32k^2=-16\)

\(\Rightarrow-k^2=-16\)

\(\Rightarrow k^2=16\)

\(\Rightarrow k=\pm4\)

Với k = 4

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=4\\\dfrac{y}{3}=4\\\dfrac{z}{4}=4\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=2\cdot4=8\\y=3\cdot4=12\\z=4\cdot4=16\end{matrix}\right.\)

Với k = -4 

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=-4\\\dfrac{y}{3}=-4\\\dfrac{z}{4}=-4\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=2\cdot-4=-8\\y=3\cdot-4=-12\\z=4\cdot-4=-16\end{matrix}\right.\) 

Vậy: ...

9 tháng 1 2024

b) Đặt: \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=k\)

\(\Rightarrow\left\{{}\begin{matrix}x=3k\\y=4k\\z=5k\end{matrix}\right.\) 

Ta có: \(2x^2+2y^2-3z^2=-100\)

\(\Rightarrow2\cdot\left(3k\right)^2+2\cdot\left(4k\right)^2-3\cdot\left(5k\right)^2=-100\)

\(\Rightarrow2\cdot9k^2+2\cdot16k^2-3\cdot25k^2=-100\)

\(\Rightarrow18k^2+32k^2-75k^2=-100\)

\(\Rightarrow-25k^2=-100\)

\(\Rightarrow k^2=-\dfrac{100}{-25}=4\)

\(\Rightarrow k=\pm2\)

Với k = 2

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=2\\\dfrac{y}{4}=2\\\dfrac{z}{5}=2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=2\cdot3=6\\y=2\cdot4=8\\z=2\cdot5=10\end{matrix}\right.\)

Với k = -2

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=-2\\\dfrac{y}{4}=-2\\\dfrac{z}{5}=-2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=2\cdot-3=-6\\y=2\cdot-4=-8\\z=2\cdot-5=-10\end{matrix}\right.\)

Vậy: ... 

22 tháng 6 2023

Bài `10`

`a,` Ta có : `x/2=y/3=>(4x)/8 =(3y)/9`

ADTC dãy tỉ số bằng nhau ta có :

`(4x)/8 =(3y)/9=(4x-3y)/(8-9)=(-2)/(-1)=2`

`=> x/2=2=>x=2.2=4`

`=>y/3=2=>y=2.3=6`

`b,` Ta có : `2x=5y=>x/5=y/2`

ADTC dãy tỉ số bằng nhau ta có :

`x/5=y/2=(x+y)/(5+2)=-42/7=-6`

`=>x/5=-6=>x=-6.5=-30`

`=>y/2=-6=>y=-6.2=-12`

Bài `11`

`a,` Ta có : `x/3=y/4=z/6=>x/3=(2y)/8 =(3z)/18`

ADTC dãy tỉ số bằng nhau ta có :

`x/3=(2y)/8=(3z)/18=(x+2y-3z)/(3+8-18)=(-14)/(-7)=2`

`=>x/3=2=>x=2.3=6`

`=>y/4=2=>y=2.4=8`

`=>z/6=2=>z=2.6=12`

Bạn đăng lại `2` câu sau nhe , mình ko hiểu `x=y-z` với `15x-5y=3x=45`

`d,` Ta có :

`x/2=y/3=>x/4=y/6`

`y/2=z/3=>y/6=z/9`

`-> x/4=y/6=z/9=>x/4=(2y)/12 =(3z)/27`

ADTC dãy tỉ số bằng nhau ta có :

`x/4=(2y)/12=(3z)/27=(x-2y+3z)/(4-12+27)=19/19=1`

`=>x/4=1=>x=1.4=4`

`=>y/6=1=>y=1.6=6`

`=>z/9=1=>z=1.9=9`

15 tháng 11 2015

bài 2 :

ta có x:y:z=3:5:(-2)

=>x/3=y/5=z/-2

=>5x/15=y/5=3z/-6

áp dụng tc dãy ... ta có :

5x/15=y/5=3z/-6=5x-y+3z/15-5+(-6)=-16/4=-4

=>x/3=-=>x=-12

=>y/5=-4=>y=-20

=>z/-2=-4=>z=8

23 tháng 10 2016

1.C1 Ta có : x/2=y/5=>(x/2)^2=(y/5)^2=x/2.y/5=xy/10=40/10=4=>x=4 hoặc -4, y=10 hoặc -10

   C2 : Đặt x/2=y/5=k(k khác 0) => x=2k , y=5k

Ta có xy=40=>2k5k=10k^2=40=>k^2=4=>k=-2 hoặc k=2

Với k=-2=>x=-4,y=-10

Với k=2 => x=4,y=10

Vậy

23 tháng 10 2016

Toán tỉ lệ thức dễ , đây là 4 phần gồm 4 loại khác nhau