\(\frac{3}{10}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2018

có  x.y=x:y 

<--> x.y^2=x

<-->y^2=1

<--> y=1 hoặc y=-1

có x-y=x.y(*)

+Thay y=1 vào (*) ta đc x+1=x <-->1=0(VL)

+Thay y=-1 vào (*) ta đc x-1=-x <--> x=1/2

Bài này cần đk x,y khác 0 nữa

29 tháng 6 2018

Thiếu điều kiện x,y khác 0

a, Từ x-y=xy => x=xy+y=y(x+1) => x:y=x+1 (vì y khác 0)

Ta có: x-y=x:y => x-y=x+1 => y=-1

Thay y=-1 vào x-y=xy ta được:

x-(-1)=x.(-1) => x+1=-x => 2x=-1 => x=\(\frac{-1}{2}\)

Vậy x=-1/2,y=-1

b, Từ x+y=xy => x=xy-y=y(x-1) => x:y=x-1 (vì y khác 0)

Ta có: x+y=x:y

=>x+y=x-1 => y=-1

Thay y=-1 vào x+y=xy ta được:

x+(-1)=x.(-1) => x-1=-x => 2x=1 => x=\(\frac{1}{2}\)

Vậy x=1/2,y=-1

c, Trừ các đẳng thức vế với vế ta được:

x(x-y)-y(x-y)=\(\frac{3}{10}+\frac{3}{50}\)

=>(x-y)(x-y)=\(\frac{9}{25}\)

=>(x-y)2=\(\left(\pm\frac{3}{5}\right)^2\)

=>x-y=\(\pm\frac{3}{5}\)

Với \(x-y=\frac{3}{5}\Rightarrow\hept{\begin{cases}\frac{3}{5}x=\frac{3}{10}\\\frac{3}{5}y=-\frac{3}{50}\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=-\frac{1}{10}\end{cases}}}\)

Với \(x-y=-\frac{3}{5}\Rightarrow\hept{\begin{cases}-\frac{3}{5}x=\frac{3}{10}\\-\frac{3}{5}y=-\frac{3}{50}\end{cases}\Rightarrow\hept{\begin{cases}x=-\frac{1}{2}\\y=\frac{1}{10}\end{cases}}}\)

Vậy...

13 tháng 11 2016

x+(-31/12)^2=(49/12)^2-x

x+x=(49/12)^2-(-31/12)^2

tính x

từ x tìm ra y

b)x(x-y):[y(x-y)]=3/10:(-3/50)=...

=>x/y=... =>x=...;y=...

24 tháng 7 2019

1)

a) Ta có: \(\frac{x}{y}=\frac{7}{13}\).

=> \(\frac{x}{7}=\frac{y}{13}\)\(x+y=60.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{x}{7}=\frac{y}{13}=\frac{x+y}{7+13}=\frac{60}{20}=3.\)

\(\left\{{}\begin{matrix}\frac{x}{7}=3=>x=3.7=21\\\frac{y}{13}=3=>y=3.13=39\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(21;39\right).\)

c) Ta có: \(\frac{x}{y}=\frac{9}{10}.\)

=> \(\frac{x}{9}=\frac{y}{10}\)\(y-x=120.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{x}{9}=\frac{y}{10}=\frac{y-x}{10-9}=\frac{120}{1}=120.\)

\(\left\{{}\begin{matrix}\frac{x}{9}=120=>x=120.9=1080\\\frac{y}{10}=120=>y=120.10=1200\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(1080;1200\right).\)

d) Ta có: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}.\)

=> \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)\(x+y+z=81.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{2+3+4}=\frac{81}{9}=9.\)

\(\left\{{}\begin{matrix}\frac{x}{2}=9=>x=9.2=18\\\frac{y}{3}=9=>y=9.3=27\\\frac{z}{4}=9=>z=9.4=36\end{matrix}\right.\)

Vậy \(\left(x;y;z\right)=\left(18;27;36\right).\)

Mình chỉ làm 3 câu thôi nhé, dài quá bạn.

Chúc bạn học tốt!

18 tháng 6 2019

#)Giải :

a) Ta có : \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{x}{15}=\frac{y}{20};\frac{y}{20}=\frac{z}{28}\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)

Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{186}{62}=3\)

\(\hept{\begin{cases}\frac{x}{15}=3\\\frac{y}{20}=3\\\frac{z}{28}=3\end{cases}\Rightarrow\hept{\begin{cases}x=45\\y=60\\z=84\end{cases}}}\)

Vậy x = 45; y = 60; z = 84

b) Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{\left(y+z+1\right)+\left(x+z+2\right)+\left(x+y-3\right)}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)

\(\Rightarrow\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}=2\)

\(\Rightarrow\hept{\begin{cases}y+z+1=2x\left(1\right)\\x+z+2=2y\left(2\right)\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x+y-3=2z\left(3\right)\\x+y+z=\frac{1}{2}\left(4\right)\end{cases}}\)

\(\left(+\right)x+y+z=\frac{1}{2}\Rightarrow y+z=\frac{1}{2}-z\)

Thay (1) vào (+) ta được :

\(\frac{1}{2}-x+1=2x\Rightarrow\frac{3}{2}=3x\Rightarrow x=\frac{1}{2}\)

\(\left(+_2\right)x+y+z=\frac{1}{2}\Rightarrow x+z=\frac{1}{2}-y\)

Thay (2) và (+2) ta được :

\(\frac{1}{2}-y+2=2y\Rightarrow\frac{5}{2}=3y\Rightarrow y=\frac{5}{6}\)

\(\left(+_3\right)x+y+z=\frac{1}{2}+\frac{5}{6}+z=\frac{1}{2}\Rightarrow\frac{4}{3}+z=\frac{1}{2}\Rightarrow z=\frac{-5}{6}\)

Vậy \(\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{5}{6}\\z=\frac{-5}{6}\end{cases}}\)

18 tháng 6 2019

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)

\(\Rightarrow x=2k;y=3k;z=5k\)

\(\Rightarrow xyz=2k\cdot3k\cdot5k=30k^3\)

Mà \(xyz=810\Rightarrow30k^3=810\)

\(\Rightarrow k^3=27\)

\(\Rightarrow k=3\)

Thay vào tìm x,,z.

9 tháng 12 2016

a, \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{5x}{15}=\frac{2y}{8}=\frac{5x-2y}{15-8}=\frac{28}{7}=4\)

=> x = 4.3 = 12

y = 4.4 = 16

b, \(x:2=y:\left(-5\right)\Rightarrow\frac{x}{2}=\frac{y}{-5}=\frac{x-y}{2-\left(-5\right)}=\frac{-7}{7}=-1\)

=> x = (-1).2 = -2

y = (-1)(-5) = 5

c, \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\)

\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\)

\(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-10}=\frac{10}{10}=1\)

=> x = 8

y =12

z = 15

30 tháng 6 2017

Lấy x . ( x - y ) - y . ( x - y ) được :

\(x.\left(x-y\right)-y.\left(x-y\right)=\frac{3}{10}-\left(-\frac{3}{50}\right)\)

\(\left(x-y\right)\left(y-x\right)=\frac{9}{25}\)

\(\orbr{\begin{cases}\left(x-y\right)^2=\left(\frac{3}{5}\right)^2\\\left(x-y\right)^2=\left(-\frac{3}{5}\right)^2\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x-y=\frac{3}{5}\\x-y=-\frac{3}{5}\end{cases}}\)

Thay \(x-y=\frac{3}{5}\)vào hai đẳng thức đã cho ta tính được : \(x=\frac{1}{2}\)\(y=-\frac{1}{10}\)

Thay \(x-y=-\frac{3}{5}\)vào hai đẳng thức đã cho ta tính được : \(x=-\frac{1}{2}\)\(y=\frac{1}{10}\)

26 tháng 7 2016

help me

28 tháng 5 2017

\(x\left(x-y\right)=\frac{3}{10}\)               ;                \(y\left(x-y\right)=-\frac{3}{50}\)

\(x^2-xy=\frac{3}{10}\)                   ;                 \(xy-y^2=-\frac{3}{50}\)

Ghép 2 vế , ta có :

\(x^2-xy-xy+y^2=\frac{3}{10}-\frac{-3}{50}\)

\(x^2-2xy+y^2=\frac{9}{25}\)

\(\left(x-y\right)^2=\frac{9}{25}\)

\(\orbr{\begin{cases}x-y=\frac{3}{5}\\x-y=-\frac{3}{5}\end{cases}}\)

Thay từng trường hợp x-y vào , ta tính được x,y