Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left|2-x\right|+x=-3\\ \Rightarrow\left|2-x\right|=-3-x\left(ĐK:-3-x\ge0\right)\\ \Rightarrow\left[{}\begin{matrix}2-x=-3-x\\2-x=3+x\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x-x=-3-2\\-x-x=3-2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}0=-5\left(\text{vô lí}\right)\\-2x=1\end{matrix}\right.\Rightarrow x=\frac{-1}{2}\left(ktm\text{ }-3-x\ge0\right)\)
Vậy \(x\in\varnothing\)
b) \(\left|x-1\right|+1=2x-3\\ \Rightarrow\left|x-1\right|=2x-4\left(ĐK:2x-4\ge0\right)\\ \Rightarrow\left[{}\begin{matrix}x-1=2x-4\\x-1=-2x+4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x-x=4-1\\x+2x=1+4\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=3\left(t/m\right)\\3x=5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\left(t/m\right)\\x=\frac{5}{3}\left(ktm\right)\end{matrix}\right.\)
Vậy x = 3
c) \(\left|\frac{4}{3}x-\frac{4}{3}+\frac{1}{2}\right|=\left|2x-2+\frac{1}{3}\right|\\ \Rightarrow\left[{}\begin{matrix}\frac{4}{3}x-\frac{4}{3}+\frac{1}{2}=2x-2+\frac{1}{3}\\\frac{4}{3}x-\frac{4}{3}+\frac{1}{2}=-2x+2-\frac{1}{3}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x-\frac{4}{3}x=2-\frac{1}{3}-\frac{4}{3}+\frac{1}{2}\\\frac{4}{3}x+2x=\frac{4}{3}-\frac{1}{2}+2-\frac{1}{3}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\frac{2}{3}x=\frac{5}{6}\\\frac{10}{3}x=\frac{5}{2}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{5}{4}\\x=\frac{3}{4}\end{matrix}\right.\)
Vậy \(x\in\left\{\frac{5}{4};\frac{3}{4}\right\}\)
3)
a)\(\left(x+5\right)^3=-64\\ \Leftrightarrow\left(x+5\right)^3=\left(-4\right)^3\\ \Leftrightarrow x+5=-4\\ \Leftrightarrow x=-9\)
Vậy x = -9
b)\(\left(2x-3\right)^2=9\\ \Leftrightarrow\left(2x-3\right)^2=\left(\pm3\right)^2\\ \Rightarrow2x-3\in\left\{3;-3\right\}\Rightarrow\left[{}\begin{matrix}2x-3=3\\2x-3=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=0\end{matrix}\right.\)
Vậy...
c)\(x^2+1=82\\ \Leftrightarrow x^2=81\\ \Leftrightarrow x^2=\left(\pm9\right)^2\\ \Rightarrow x\in\left\{9;-9\right\}\)
Vậy...
d)\(x^2+\frac{7}{4}=\frac{23}{4}\\ \Leftrightarrow x^2=16\\ \Leftrightarrow x^2=\left(\pm4\right)^2\\ \Rightarrow x\in\left\{4;-4\right\}\)
Vậy...
e)\(\left(2x+3\right)^2=25\\ \Leftrightarrow\left(2x+3\right)^2=\left(\pm5\right)^2\\ \Rightarrow2x+3\in\left\{5;-5\right\}\\ \Rightarrow\left[{}\begin{matrix}2x+3=5\\2x+3=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-4\end{matrix}\right.\)
Vậy...
3)
a) \(\left(x+5\right)^3=-64\)
\(\Rightarrow\left(x+5\right)^3=\left(-4\right)^3\)
\(\Rightarrow x+5=-4\)
\(\Rightarrow x=\left(-4\right)-5\)
\(\Rightarrow x=-9\)
Vậy \(x=-9.\)
b) \(\left(2x-3\right)^2=9\)
\(\Rightarrow2x-3=\pm3.\)
\(\Rightarrow\left[{}\begin{matrix}2x-3=3\\2x-3=-3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=6\\2x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=6:2\\x=0:2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x=0\end{matrix}\right.\)
Vậy \(x\in\left\{3;0\right\}.\)
c) \(x^2+1=82\)
\(\Rightarrow x^2=82-1\)
\(\Rightarrow x^2=81\)
\(\Rightarrow\left[{}\begin{matrix}x=9\\x=-9\end{matrix}\right.\)
Vậy \(x\in\left\{9;-9\right\}.\)
d) \(x^2+\frac{7}{4}=\frac{23}{4}\)
\(\Rightarrow x^2=\frac{23}{4}-\frac{7}{4}\)
\(\Rightarrow x^2=4\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
Vậy \(x\in\left\{2;-2\right\}.\)
Chúc bạn học tốt!
Bài 1 vì trị tuyệt đối của 1 số luôn ko âm từ đó suy ra câu a,b cả 2 số hạng đều =0
\(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{3}\right|+\left|x+\frac{1}{4}\right|=4x.\)
Điều kiện \(4x\ge0\)nên
\(x+\frac{1}{2}+x+\frac{1}{3}+x+\frac{1}{4}=4x\)
\(\Leftrightarrow3x+\frac{13}{12}=4x\)
\(\Leftrightarrow4x-3x=\frac{13}{12}\)
\(\Leftrightarrow x=\frac{13}{12}\)
Bài 1:
\(\frac{x}{-8}=\frac{-18}{x}\)
\(\Rightarrow x^2=144\)
\(\Rightarrow x=\pm12\)
Vậy \(x=\pm12\)
Bài 3:
Giải:
Ta có: \(\frac{a}{b}=\frac{2,1}{2,7}\Rightarrow\frac{a}{2,1}=\frac{b}{2,7}\Rightarrow\frac{a}{21}=\frac{b}{27}\Rightarrow\frac{a}{7}=\frac{b}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{7}=\frac{b}{9}=\frac{5a}{35}=\frac{4b}{36}=\frac{5a-4b}{35-36}=\frac{-1}{-1}=1\)
+) \(\frac{a}{7}=1\Rightarrow a=7\)
+) \(\frac{b}{9}=1\Rightarrow b=9\)
\(\Rightarrow\left(a-b\right)^2=\left(7-9\right)^2=\left(-2\right)^2=4\)
Vậy \(\left(a-b\right)^2=4\)
Bài 4:
Giải:
Ta có: \(\frac{a}{b}=\frac{9,6}{12,8}\Rightarrow\frac{a}{9,6}=\frac{b}{12,8}\Rightarrow\frac{a}{96}=\frac{b}{128}\Rightarrow\frac{a}{3}=\frac{b}{4}\)
Đặt \(\frac{a}{3}=\frac{b}{4}=k\)
\(\Rightarrow a=3k,b=4k\)
Mà \(a^2+b^2=25\)
\(\Rightarrow\left(3k\right)^2+\left(4k\right)^2=25\)
\(\Rightarrow9.k^2+16.k^2=25\)
\(\Rightarrow25k^2=25\)
\(\Rightarrow k^2=1\)
\(\Rightarrow k=\pm1\)
+) \(k=1\Rightarrow a=3;b=4\)
+) \(k=-1\Rightarrow a=-3;b=-4\)
\(\Rightarrow\left|a+b\right|=\left|3+4\right|=\left|-3+-4\right|=7\)
Vậy \(\left|a+b\right|=7\)
Áp dụng BĐT
\(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)Ta có:
\(\left|2x-7\right|+\left|2x+1\right|=\left|2x-7\right|+\left|-2x-1\right|\ge\left|2x-7+\left(-2x-1\right)\right|=8\)
Mà \(\left|2x-7\right|+\left|2x+1\right|\ge\)8 nên không có số nguyên x nào thỏa mãn đề ra
b/ \(\left|2x-1\right|=\frac{1}{2}\)
=> \(\orbr{\begin{cases}2x-1=\frac{1}{2}\\2x-1=\frac{-1}{2}\end{cases}}\)=> \(\orbr{\begin{cases}2x=\frac{3}{2}\\2x=\frac{1}{2}\end{cases}}\)=> \(\orbr{\begin{cases}x=\frac{3}{4}\\x=\frac{1}{4}\end{cases}}\)