Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\overline{abcd}+\overline{dcba}=11220\)
\(\Leftrightarrow1000a+100b+10c+d+1000d+100c+10d+a=11220\)
\(\Leftrightarrow1001\left(a+d\right)+110\left(b+c\right)=11200\)
\(\Leftrightarrow11\cdot91\left(a+d\right)=110\left(102-\left(b+c\right)\right)\)
\(\Leftrightarrow91\left(a+d\right)=10\left(102-\left(b+c\right)\right)\)(1)
=> 102 - (b + c) chia hết cho 91 mà 0 <= b + c <= 18 => 84 <= 102 - (b + c) <=102. Trong khoảng [84;102] chỉ có 91 là bội của 91.
Do đó: 102 - (b + c) = 91 => b + c = 11
Thay vào (1) => a + b = 10
Vậy, tổng a + b + c + d = 10 + 11 = 21.
bạn ơi bạn có thể viết rõ ràng hơn cho mình được không? mình mới vào học lớp 6 nên không quen viết tắt. Nếu được mình sẽ cho bạn 1 k nhé Đinh Thùy Linh thân mến
Có abbc < 10.000
=> ab.ac.7 < 10000
=> ab.ac < 1429
=> a0.a0 < 1429 (a0 là số 2 chữ số kết thúc = 0)
=> a0 < 38
=> a <= 3
+) Với a = 3 ta có
3bbc = 3b.3c.7
Ta thấy 3b.3c.7 > 30.30.7 = 6300 > 3bbc => loại
+)Với a = 2 ta có
2bbc = 2b.2c.7
Ta thấy 2b.2c.7 > 21.21.7 = 3087 > 2bbc => loại ( là 21.21.7 vì b và c khác 0 nên nhỏ nhất = 1)
=> a chỉ có thể = 1
Ta có 1bbc = 1b.1c.7
có 1bbc > 1b.100 => 1c.7 > 100 => 1c > 14 => c >= 5
lại có 1bbc = 100.1b + bc < 110.1b ( vì bc < 1b.10)
=> 1c.7 < 110 => 1c < 16 => c < 6
vậy c chỉ có thể = 5
ta có 1bb5 = 1b.15.7 => 1bb5 = 1b.105
<=> 100.1b + b5 = 1b.105b
<=> b5 = 5.1b
<=> 10b + 5 = 5.(10+b)
=> b = 9
vậy số abc là 195
chúc bn hk toyó @_@
theo đề ta có :
abc=11(a+b+c)
89a=b+10c
Ta thấy \(0\le b,c\le9\)\(\Rightarrow b+10c\le99\)\(\Rightarrow a=1\)(do a khác 0)
\(\Rightarrow b=9,c=8\)
\(\Rightarrow abc=198\)
gọi 3 số phải tìm là a, b, c giả sử a > b > c (a, b, c khác 0)
vì a> b> c nên 2 số lớn nhất là: abc và acb
có abc + acb = 1444
a x 200 + 11 (b + c)= 1444
a < 8 vì 8 x 200 = 1600 > 1444
với a = 7 có
7 x 200 + 11 (b + c) = 1444
11 (b +c )= 44
b + c = 4
vì b và c là hai chữ số khác nhau và khác 0 nên b = 3, c= 1
các chữ số phải tìm là 7, 3, 1
các trường hợp a < 7 thì có 1444 - a x 200 không chia hết cho 11
Vậy các số phải tìm là 1, 3, 7
gọi 3 số phải tìm là a, b, c giả sử a > b > c (a, b, c khác 0)
vì a> b> c nên 2 số lớn nhất là: abc và acb
có abc + acb = 1444
a x 200 + 11 (b + c)= 1444
a < 8 vì 8 x 200 = 1600 > 1444
với a = 7 có
7 x 200 + 11 (b + c) = 1444
11 (b +c )= 44
b + c = 4
vì b và c là hai chữ số khác nhau và khác 0 nên b = 3, c= 1
các chữ số phải tìm là 7, 3, 1
các trường hợp a < 7 thì có 1444 - a x 200 không chia hết cho 11
Vậy các số phải tìm là 1, 3, 7
Vì a,b,c,d \(\inℕ^∗\Rightarrow a+b+c< +b+c+d\Rightarrow\frac{a}{a+b+c}>\frac{a}{a+b+c+d}\)
Tương tự
\(\frac{b}{a+b+d}>\frac{b}{a+b+c+d}\)
\(\frac{c}{a+c+d}>\frac{c}{a+b+c+d}\)
\(\frac{d}{b+c+d}>\frac{d}{a+b+c+d}\)
\(\Rightarrow M>\frac{a+b+c+d}{a+b+c+d}=1\)
Vì a,b,c,d \(\inℕ^∗\)\(\Rightarrow a+b+c>a+b\Rightarrow\frac{a}{a+b+c}< \frac{a}{a+b}\)
Tương tự
\(\hept{\begin{cases}\frac{b}{a+b+d}< \frac{b}{a+b}\\\frac{c}{a+c+d}< \frac{c}{c+d}\\\frac{d}{b+c+d}< \frac{d}{a+b+c+d}\end{cases}}\)
\(\Rightarrow M< \frac{a+b}{a+b}+\frac{c+d}{c+d}=2\)
Vậy \(1< M< 2\)nên M không là số tự nhiên