Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a; \(\dfrac{7}{8}\) + \(x\) = \(\dfrac{4}{7}\)
\(x\) = \(\dfrac{4}{7}\) - \(\dfrac{7}{8}\)
\(x\) = \(\dfrac{32}{56}\) - \(\dfrac{49}{56}\)
\(x=-\) \(\dfrac{49}{56}\)
Vậy \(x=-\dfrac{49}{56}\)
b; 6 - \(x\) = - \(\dfrac{3}{4}\)
\(x\) = 6 + \(\dfrac{3}{4}\)
\(x\) = \(\dfrac{24}{4}+\dfrac{3}{4}\)
\(x=\dfrac{27}{4}\)
Vậy \(x=\dfrac{27}{4}\)
c; \(\dfrac{1}{-5}\) + \(x\) = \(\dfrac{3}{4}\)
\(x\) = \(\dfrac{3}{4}\) + \(\dfrac{1}{5}\)
\(x=\dfrac{15}{20}\) + \(\dfrac{4}{20}\)
\(x=\dfrac{19}{20}\)
Vậy \(x=\dfrac{19}{20}\)
Bài 1:
d; - 6 - \(x\) = - \(\dfrac{3}{5}\)
\(x\) = - 6 + \(\dfrac{3}{5}\)
\(x=-\dfrac{30}{5}\) + \(\dfrac{3}{5}\)
\(x=-\dfrac{27}{5}\)
Vậy \(x=-\dfrac{27}{5}\)
e; - \(\dfrac{2}{6}\) + \(x\) = \(\dfrac{5}{7}\)
\(x\) = \(\dfrac{5}{7}\) + \(\dfrac{2}{6}\)
\(x\) = \(\dfrac{15}{21}\) + \(\dfrac{1}{3}\)
\(x=\dfrac{15}{21}\) + \(\dfrac{7}{21}\)
\(x=\dfrac{22}{21}\)
Vậy \(x=\dfrac{22}{21}\)
f; - 8 - \(x\) = - \(\dfrac{5}{3}\)
\(x\) = \(-\dfrac{5}{3}\) + 8
\(x\) = \(\dfrac{-5}{3}\) + \(\dfrac{24}{3}\)
\(x\) = \(\dfrac{-19}{3}\)
Vậy \(x=-\dfrac{19}{3}\)
Bài 6:
\(M=\left|x-2002\right|+\left|x-2001\right|=\left|2002-x\right|+\left|x-2001\right|\)
Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) có:
\(M\ge\left|2002-x+x-2001\right|=\left|1\right|=1\)
Dấu " = " khi \(\left\{{}\begin{matrix}2002-x\ge0\\x-2001\ge0\end{matrix}\right.\Rightarrow2001\le x\le2002\)
Vậy \(MIN_M=1\) khi \(2001\le x\le2002\)
Bài 8:
a, Ta có: \(A=3,7+\left|4,3-x\right|\ge3,7\)
Dấu " = " khi \(\left|4,3-x\right|=0\Rightarrow x=4,3\)
Vậy \(MIN_A=3,7\) khi x = 4,3
b, \(B=\left|3x+8,4\right|-24,2\ge-24,2\)
Dấu " = " khi \(\left|3x+8,4\right|=0\Rightarrow x=-2,3\)
Vậy \(MIN_B=-24,2\) khi x = -2,3
c, Ta có: \(\left\{{}\begin{matrix}\left|4x-3\right|\ge0\\\left|5y+7,5\right|\ge0\end{matrix}\right.\Rightarrow\left|4x-3\right|+\left|5y+7,5\right|\ge0\)
\(\Rightarrow C\ge17,5\)
Dấu " = " khi \(\left\{{}\begin{matrix}\left|4x-3\right|=0\\\left|5y+7,5\right|=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{3}{4}\\y=-1,5\end{matrix}\right.\)
Vậy \(MIN_C=17,5\) khi \(x=\dfrac{3}{4}\) và y = -1,5
Bài 9:
a, \(D=5,5-\left|2x-1,5\right|\le5,5\)
Dấu " = " khi \(\left|2x-1,5\right|=0\Rightarrow x=0,75\)
Vậy \(MIN_D=5,5\) khi x = 0,75
b, c tương tự
a: =>x-2,7=0,3 hoặc x-2,7=-0,3
=>x=3 hoặc x=2,4
b: =>|x+1,5|=2,4
=>x+1,5=2,4 hoặc x+1,5=-2,4
=>x=-3,9 hoặc x=0,9
c: =>|2x-3|=1/6
=>2x-3=1/6 hoặc 2x-3=-1/6
=>2x=19/6 hoặc 2x=17/6
=>x=17/12 hoặc x=19/12
d: =>3|2x-5|=7,5+0,8=8,3
=>|2x-5|=83/30
=>2x-5=83/30 hoặc 2x-5=-83/30
=>2x=233/30 hoặc 2x=67/30
=>x=233/60 hoặc x=67/60
e: =>x-y=0 và y+9/25=0
=>x=y=-9/25
a﴿Ta có: |4,3‐x|\(\ge\)0﴾với mọi x﴿
nên 3,7+|4,3‐x|\(\ge\)3,7 hay A\(\ge\)3,7
Do đó, GTNN của A là 3,7 khi:|4,3‐x|=0
4,3‐x=0
x=4,3‐0
x=4,3
b﴿Ta có: |2x‐1,5|>=0﴾với mọi x﴿
‐|2x‐1,5|<=0
nên 5,5‐|2x‐1,5|<=5,5 hay B<=5,5
Do đó, GTLN của B là 5,5 khi:|2x‐1,5|=0
2x‐1,5=0
2x=0+1,5
2x=1,5
x=1,5/2=15/2=7,5
Vậy GTLN của B là 5,5 khi x=7,5
c)ta có 4x − 3 ≥ 0; 5x + 7,5 ≥ 0
⇒E ≥ 17,5
=>GTNN của C là 17,5 hi x1=3/4 hoặc x2=-1,5
Bài 1 và 2 dễ rồi bạn tự làm được
Bài 3 :
\(a)\) Ta có :
\(\left|2x+3\right|\ge0\)
Mà \(\left|2x+3\right|=x+2\)
\(\Rightarrow\)\(x+2\ge0\)
\(\Rightarrow\)\(x\ge-2\)
Trường hợp 1 :
\(2x+3=x+2\)
\(\Leftrightarrow\)\(2x-x=2-3\)
\(\Leftrightarrow\)\(x=-1\) ( thoã mãn )
Trường hợp 2 :
\(2x+3=-x-2\)
\(\Leftrightarrow\)\(2x+x=-2-3\)
\(\Leftrightarrow\)\(3x=-5\)
\(\Leftrightarrow\)\(x=\frac{-5}{3}\) ( thoã mãn )
Vậy \(x=-1\) hoặc \(x=\frac{-5}{3}\)
Chúc bạn học tốt ~
1: =>|x-2/3|=-5/4(loại)
2: =>\(5.5+\left|x+2\right|=\dfrac{9}{2}\cdot\left(-3\right)\cdot3=-\dfrac{81}{2}\)
=>|x+2|=-81/2-5,5<0(loại)
3: =>5/2-x=4 hoặc 5/2-x=-4
=>x=-3/2 hoặc x=13/2
a) x . 5,5 = 7,5
x = 7,5 : 5,5 = \(\frac{25}{2}.\frac{11}{2}\)
x = \(\frac{275}{4}\)
Vậy x = \(\frac{275}{4}\)
b) \(\frac{2}{3}x-\frac{1}{2}=\frac{4}{9}\)
\(\frac{2}{3}x=\frac{4}{9}+\frac{1}{2}=\frac{8}{18}+\frac{9}{18}\)
\(\frac{2}{3}x=\frac{17}{18}\)
\(x=\frac{17}{18}:\frac{2}{3}=\frac{17}{18}.\frac{3}{2}\)
\(x=\frac{17}{12}\)
Vậy \(x=\frac{17}{12}\)