Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Thực hiện phép chia,ta được :
\(\left(x^4+ax^2+1\right):\left(x^2+x+1\right)=\left(x^2-x+a\right)\text{dư}\left(1-a\right)x+\left(b-a\right)\)
muốn chia hết thì đa thức dư phải đồng nhất bằng 0, tức là :
\(\left\{{}\begin{matrix}1-a=0\\b-a=a\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=1\end{matrix}\right.\)
Vậy ...
Bài 1:
1 (x+3)2=x2+6x+9
2
a, 2x2(3x-5x3)+10x5-5x3=6x3-10x5+10x5-5x3=x3
b, (x+3)(x2-3x+9)+(x-9)(x+3)=(x3+27)+(x2-6x-27)=x3+x2-6x
Bài 2:
a, x2-25x=0
\(\Leftrightarrow x\left(x-25\right)=0\)
\(\Leftrightarrow\begin{cases}x=0\\x-25=0\end{cases}\)
\(\Leftrightarrow\begin{cases}x=0\\x=25\end{cases}\)
b, (4x-1)2-9=0
\(\Leftrightarrow\left(4x-1-3\right)\left(4x-1+3\right)=0\)
\(\Leftrightarrow\left(4x-4\right)\left(4x+2\right)=0\)
\(\Leftrightarrow4\left(x-1\right)2\left(2x+1\right)=0\)
\(\Leftrightarrow8\left(x-1\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\begin{cases}x-1=0\\2x+1=0\end{cases}\)
\(\Leftrightarrow\begin{cases}x=1\\x=\frac{-1}{2}\end{cases}\)
Bài 3:
a, 3x2-18x+27=3(x2-6x+9)=3(x-3)2
b, xy-y2-x+y=y(x-y)-(x-y)=(y-1)(x-y)
c, x2-5x-6=x2-6x+x-6=x(x-6)+(x-6)=(x+1)(x-6)
Bài 4:
a, ( 12x3y3-3x2y3+4x2y4):6x2y3=(12x3y3:6x2y3)-(3x2y3:6x2y3)+(4x2y4:6x2y3)
=2x-1/2 + 2/3y
b, bạn ơi mình không biết cách vẽ đường kẻ để chia ý , nếu bạn biết thì chỉ cho mình rồi mình làm cho
Bài 5 :
b, A = x(2x-3)
A= 2x2-3x
A= 2(x2-3/2x)
A= 2(x2-2x3/4+9/16-9/16)
A=2[(x-3/4)2-9/16]
A=2(x-3/4)2-9/8
A=2(x-3/4)2+(-9/8)
Vì (x-3/4)2 \(\ge\)0 \(\forall x\)
-> 2(x-3/4)2 \(\ge0\forall x\)
-> 2(x-3/4)2+(-9/8)\(\ge-\frac{9}{8}\forall x\)
Vậy MinA= -9/8
Bài 1:
1. Khai triển hằng đẳng thức
(x+3)2 = x2+6x+9
2. Thực hiện phép tính
a) 2x2(3x-5x3)+10x5-5x3
=6x3-10x5+10x5-5x3
=x3
b)(x+3)(x2-3x+9)+(x-9)(x+3)
=(x3+27)+(x2+3x-9x-27)
=x3+27+x2+3x-9x-27
=x3+x2-6x
Bài 2:
a) x2-25x=0
\(\Leftrightarrow\)x(x-25)=0
\(\Leftrightarrow\) \(\left[\begin{matrix}x=0\\x-25=0\end{matrix}\right.\)
\(\Leftrightarrow\left[\begin{matrix}x=0\\x=25\end{matrix}\right.\)
Vậy x=0 hoặc x=25
b)(4x-1)2 - 9=0
\(\Leftrightarrow\)(4x-1+3)(4x-1-3)=0
\(\Leftrightarrow\)(4x+2)(4x-4)=0
\(\Leftrightarrow\)2(2x+1)(2x-2)=0
\(\Leftrightarrow\left[\begin{matrix}2x+1=0\\2x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[\begin{matrix}x=\frac{-1}{2}\\x=1\end{matrix}\right.\)
Vậy x=1 hoặc x=\(\frac{-1}{2}\)
Bài 3:
a) 3x2-18x+27
=3(x2-6x+9)
=3(x-3)2
b) xy-y2-x+y
=(xy-y2)-(x-y)
=y(x-y)-(x-y)
=(x-y)(y-1)
c) x2-5x-6
=x2-6x+x-6
=(x2-6x)+(x-6)
=x(x-6)+(x-6
=(x-6)(x+1)
Bài 4:
a) (12x3y3-3x2y3+4x2y4) : 6x2y3
=x2y3(12x-3+4y): 6x2y3
=(12x-3+4y) : 6
= (12x : 6)-(3 : 6)+(4y : 6)
=2x-\(\frac{1}{2}\)+\(\frac{2y}{3}\)
b) (6x3-19x2+23x-12) : (2x-3)
=(3x2-5x+4)(2x-3) : (2x-3)
=3x2-5x+4
a) \(\left(\frac{1}{x}+2\right)=\left(\frac{1}{x}+2\right)\left(x^2+1\right)\)
\(\Leftrightarrow\left(\frac{1}{x}+2\right)\left(x^2+1\right)-\left(\frac{1}{x}+2\right)=0\)
\(\Leftrightarrow\left(\frac{1}{x}+2\right)x^2=0\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{1}{x}+2=0\\x^2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{2}\\x=0\left(L\right)\end{cases}}\)
Vậy \(x=-\frac{1}{2}\)
s e thấy == câu này mọi ngừi ko tl vậy :v ( bài này cs cần đk ko -.- e chưa hc nên ko nắm chắc , kệ đi , cứ lm )
\(a,\left(\frac{1}{x}+2\right)=\left(\frac{1}{x}+2\right)\left(x^2+1\right)\)
\(\frac{1}{x}+2=\left(\frac{1}{x}+2\right)\left(x^2+1\right)\)
\(1+2x=x\left(\frac{1}{x}+2\right)\left(x^2+1\right)\)
\(1+2x=x^2+1+2x^3+2x\)
\(2x=x^2+2x^3+2x\)
\(0=x^2+2x^3\)
\(0=x^2\left(1+2x\right)\)
\(x=0;-\frac{1}{2}\)
\(a.\left(3x+2\right)^2-\left(3x-2\right)^2=5x+38\\\Leftrightarrow 9x^2+12x+4-9x^2+12x-4=5x+38\\ \Leftrightarrow24x-5x=38\\ \Leftrightarrow19x=38\\\Leftrightarrow x=2\)
Vậy nghiệm của phương trình trên là \(2\)
\(b.3\left(x-2\right)^2+9\left(x-1\right)=3\left(x^2+x-3\right)\\\Leftrightarrow 3\left(x^2-4x+4\right)+9x-9=3x^2+3x-9\\ \Leftrightarrow3x^2-3x^2-12x+9x-3x=-12+9-9\\ \Leftrightarrow-6x=-12\\\Leftrightarrow x=2\)
Vậy nghiệm của phương trình trên là \(2\)
\(c.\left(x-1\right)^3-x\left(x+1\right)^2=5x\left(2-x\right)-11\left(x-2\right)\\ \Leftrightarrow x^3-3x^2+3x-1-x\left(x^2+2x+1\right)=10x-5x^2-11x+22\\ \Leftrightarrow x^3-3x^2+3x-1-x^3-2x^2-x=10x-5x^2-11x+22\\\Leftrightarrow x^3-x^3-3x^2-2x^2+5x^2+3x-x-10x+11x=1+22\\ \Leftrightarrow3x=23\\\Leftrightarrow x=\frac{23}{3}\)
Vậy nghiệm của phương trình trên là \(\frac{23}{3}\)
\(d.\left(x+3\right)^2-\left(x-3\right)^2=6x+18\\ \Leftrightarrow x^2+6x+9-x^2+6x-9=6x+18\\ \Leftrightarrow12x-6x=18\\ \Leftrightarrow6x=18\\ \Leftrightarrow x=3\)
Vậy nghiệm của phương trình trên là \(3\)
\(e.\left(x+1\right)\left(x^2-x+1\right)-2x=x\left(x-1\right)\left(x+1\right)\\\Leftrightarrow x^3+1-2x=x\left(x^2-1\right)\\\Leftrightarrow x^3+1-2x=x^3-x\\ \Leftrightarrow x^3-x^3-2x+x=-1\\ \Leftrightarrow-x=-1\\ \Leftrightarrow x=1\)
Vậy nghiệm của phương trình trên là \(1\)
\(f.\left(x-2\right)^3+\left(3x-1\right)\left(3x+1\right)=\left(x+1\right)^3\\\Leftrightarrow x^3-6x^2+12x-8+9x^2-1=x^3+3x^2+3x+1\\ \Leftrightarrow x^3-x^3-6x^2+9x^2-3x^2+12x-3x=8+1+1\\ \Leftrightarrow9x=10\\ \Leftrightarrow x=\frac{10}{9}\)
Vậy nghiệm của phương trình trên là \(\frac{10}{9}\)
1, \(25x^2-10xy+y^2=\left(5x-y\right)^2\)
2, \(8x^3+36x^2y+54xy^2+27y^3=\left(2x+3y\right)^3\)
4, \(\left(a+b+c\right)^3-a^3-b^3-c^3\)
\(=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(a+c\right)-a^3-b^3-c^3\)
\(=3\left(a+b\right)\left(b+c\right)\left(a+c\right)\)
5, \(2x^3+3x^2+2x+3\)
\(=x^2\left(2x+3\right)+2x+3\)
\(=\left(x^2+1\right)\left(2x+3\right)\)
6, \(x^3z+x^2yz-x^2z^2-xyz^2\)
\(=x^3z-x^2z^2+x^2yz-xy^2\)
\(=xz\left(x^2-xz\right)+xz\left(xy-yz\right)\)
\(=xz\left[x\left(x-z\right)+y\left(x-z\right)\right]\)
\(=xz\left(x+y\right)\left(x-z\right)\)
8, \(x^3+3x^2y+3xy^2+y+y^3\)\(=\left(x+y\right)^3+y\)
9, \(x^2-6x+8\)
\(=x^2-4x-2x+8\)
\(=x\left(x-4\right)-2\left(x-4\right)\)
\(=\left(x-2\right)\left(x-4\right)\)
10, \(x^2-8x+12\)
\(=x^2-6x-2x+12\)
\(=x\left(x-6\right)-2\left(x-6\right)\)
\(=\left(x-2\right)\left(x-6\right)\)
Chỗ còn lại mai làm nốt nha.
Gặp chút sự cố đăng nhập nên hơi muộn, xin lỗi nha
11, \(a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)\)
\(=a^2b-a^2c+b^2c-b^2a+c^2a-c^2b\)
\(=a^2b-ab^2+abc-a^2c+b^2c-abc+ac^2-c^2b\)
\(=ab\left(a-b\right)-ac\left(a-b\right)-bc\left(a-b\right)+c^2\left(a-b\right)\)
\(=\left(a-b\right)\left(ab-ac-bc+c^2\right)\)
\(=\left(a-b\right)\left[b\left(a-c\right)-c\left(a-c\right)\right]\)
\(=\left(a-b\right)\left(a-c\right)\left(b-c\right)\)
12, \(x^3-7x-6\)
\(=x^3-3x^2+3x^2-9x+2x-6\)
\(=x^2\left(x-3\right)+3x\left(x-3\right)+2\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2+3x+2\right)\)
\(=\left(x-3\right)\left(x^2+x+2x+2\right)\)
\(=\left(x-3\right)\left[x\left(x+1\right)+2\left(x+1\right)\right]\)
\(=\left(x-3\right)\left(x+2\right)\left(x+1\right)\)
13, \(x^4+4\)
\(=x^4+4x^2+4-4x^2\)
\(=\left(x^2+2\right)^2-4x^2\)
\(=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)
14, \(a^4+64\)
\(=a^4+16a^2+64-16a^2\)
\(=\left(a^2+8\right)^2-16a^2\)
\(=\left(a^2-4a+8\right)\left(a^2+4a+8\right)\)
15, \(x^5+x+1\)
\(=x^5-x^2+x^2+x+1\)
\(=x^2\left(x^3-1\right)+x^2+x+1\)
\(=x^2\left(x-1\right)\left(x^2+x+1\right)+x^2+x+1\)
\(=\left(x^2+x+1\right)\left[x^2\left(x-1\right)+1\right]\)
16, \(x^5+x-1\)
\(=x^5-x^4+x^3+x^4-x^3+x^2-x^2+x-1\)
\(=x^3\left(x^2-x+1\right)-x^2\left(x^2-x+1\right)-\left(x^2-x+1\right)\)
\(=\left(x^2-x+1\right)\left(x^3-x^2-1\right)\)
17, \(\left(x^2+x\right)^2-2\left(x^2+x\right)-15\)
\(=\left(x^2+x\right)\left(x^2+x-2\right)-15\)
19, \(\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\) (*)
Đặt \(x^2+8x+7=a\) ta có:
(*) \(\Leftrightarrow a\left(a+8\right)+15\)
\(\Leftrightarrow a^2+8a+15\)
\(\Leftrightarrow a^2+3a+5a+15\)
\(\Leftrightarrow a\left(a+3\right)+5\left(a+3\right)\)
\(\Leftrightarrow\left(a+3\right)\left(a+5\right)\)
Trả lại biến cũ ta có: (*) \(\Leftrightarrow\left(x^2+8x+10\right)\left(x^2+8x+12\right)\)
20, \(\left(x^2+3x+1\right)\left(x^2+3x+2\right)-6\) (*)
Đặt \(x^2+3x+1=a\) ta có:
(*) \(\Leftrightarrow a\left(a+1\right)-6\)
\(\Leftrightarrow a^2+a-6\)
\(\Leftrightarrow a^2+3a-2a-6\)
\(\Leftrightarrow a\left(a+3\right)-2\left(a+3\right)\)
\(\Leftrightarrow\left(a-2\right)\left(a+3\right)\)
Trả lại biến cũ ta có: (*) \(\Leftrightarrow\left(x^2+3x-1\right)\left(x^2+3x+5\right)\)
a)Ta có:
\(\left(x-2\right)^2-\left(x-3\right)\left(x-1\right)\\ =x^2-4x+4-x^2+4x-3\\ =1\)
Vậy biểu thức \(\left(x-2\right)^2-\left(x-3\right)\left(x-1\right)\)không phụ thuộc vào biến
b) Ta có:
\(\left(x-1\right)^3-\left(x+1\right)^3+6\left(x+1\right)\left(x-1\right)\\ =x^3-3x^2+3x-1-x^3-3x^2-3x-1+6x^2-6\\ =-8\)
Vậy.....
c) Ta có:
\(\left(x-3\right)\left(x+3\right)\left(x^2+9\right)-\left(x^2-2\right)\left(x^2+2\right)\\ =\left(x^2-9\right)\left(x^2+9\right)-x^4+4\\ =x^4-81-x^4+4=-77\)
Vậy....
d) Ta có: \(\left(3x+1\right)^2-2\left(3x+1\right)\left(3x-5\right)+\left(3x-5\right)^2\\ =\left(3x+1-3x+5\right)^2\\ =6^2=36\)
Vậy....
Bài 2:
\(=\dfrac{3x^4+3x^2+x^3+x-3x^2-3+5x-5}{x^2+1}\)
\(=3x^2+x-3+\dfrac{5x-5}{x^2+1}\)
Bài 3:
\(\dfrac{A}{B}=\dfrac{2x^3-x^2-x+1}{x^2-2x}\)
\(=\dfrac{2x^3-4x^2+3x^2-6x+5x+1}{x^2-2x}\)
\(=2x^2+3+\dfrac{5x+1}{x^2-2x}\)
=>\(2x^3-x^2-x+1=\left(x^2-2x\right)\left(2x^2+3\right)+5x+1\)
\(\left(x+3\right)\left(x^2-3x+9\right)-x\left(x-2\right)^2=27\)
\(\Leftrightarrow\left(x^3+3^3\right)-x\left(x^2-4x+4\right)=27\)
\(\Leftrightarrow\left(x^3+27\right)-\left(x^3-4x^2+4x\right)=27\)
\(\Leftrightarrow x^3+27-x^3+4x^2-4x=27\)
\(\Leftrightarrow4x^2-4x=0\)
\(\Leftrightarrow4x\left(x-1\right)=0\)
\(\Leftrightarrow x\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
Vậy \(x=0\)hoặc \(x=1\)