Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\frac{x-1}{21}=\frac{3}{x+1}\)
\(\Leftrightarrow\left[x-1\right]\left[x+1\right]=63\)
\(\Leftrightarrow x^2-1=63\)
\(\Leftrightarrow x^2=64\)
\(\Leftrightarrow x^2=8^2\)
\(\Leftrightarrow x=\pm8\)
\(b,\frac{7}{x}+\frac{4}{5\cdot9}+\frac{4}{9\cdot13}+\frac{4}{13\cdot17}+...+\frac{4}{41\cdot45}=\frac{29}{45}\)
\(\Leftrightarrow\frac{7}{x}+\left[\frac{4}{5\cdot9}+\frac{4}{9\cdot13}+\frac{4}{13\cdot17}+...+\frac{4}{41\cdot45}\right]=\frac{29}{45}\)
\(\Leftrightarrow\frac{7}{x}+\left[\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{41}-\frac{1}{45}\right]=\frac{29}{45}\)
\(\Leftrightarrow\frac{7}{x}+\left[\frac{1}{5}-\frac{1}{45}\right]=\frac{29}{45}\)
\(\Leftrightarrow\frac{7}{x}+\frac{8}{45}=\frac{29}{45}\)
\(\Leftrightarrow\frac{7}{x}=\frac{21}{45}\)
\(\Leftrightarrow\frac{7}{x}=\frac{7}{15}\)
\(\Leftrightarrow x=15\)
Vậy x = 15
Bài cuối tương tự
X+(1/1.3+1/3.5+1/5.7+...+1/99.101)=100
X+(2/1.3+2/3.5+2/5.7+...+2/99.101)=100
X+(1 -1/3+1/3-1/5+1/5-1/7+...+1/99-1/101)=100
X+(1-1/101)=100
X+100/101=100
X=100-100/101
X=10000/101
\(a,\frac{3x+2}{5x+7}=\frac{3x-1}{5x-1}=\frac{\left(3x+2\right)-\left(3x-1\right)}{\left(5x+7\right)-\left(5x-1\right)}=\frac{3}{8};\frac{3x+2}{5x+7}=\frac{3}{8}\Leftrightarrow24x+16=15x+21\Leftrightarrow9x=5\Leftrightarrow x=\frac{5}{9}\) \(b,\frac{37-x}{x+13}=\frac{3}{7}\Leftrightarrow37.7-7x=3x+39\Leftrightarrow259-7x=3x+39\Leftrightarrow220-7x=3x\Leftrightarrow10x=220\Leftrightarrow x=22\) \(c,\frac{x+1}{2x+1}=\frac{0,5x+2}{x+3}=\frac{x+4}{2x+6}=\frac{\left(x+4\right)-\left(x+1\right)}{2x+6-\left(2x+1\right)}=\frac{3}{5};\frac{x+1}{2x+1}=\frac{3}{5}\Leftrightarrow5x+5=6x+3\Leftrightarrow x=2\) \(d,\frac{x-2}{x+2}=\frac{x+3}{x-4}=\frac{\left(x+3\right)-\left(x-2\right)}{\left(x-4\right)-\left(x+2\right)}=\frac{5}{-6};\frac{x-2}{x+2}=\frac{5}{-6}\Leftrightarrow6\left(2-x\right)=5x+10\Leftrightarrow2-6x=5x\Leftrightarrow x=\frac{2}{11}\) \(f,\frac{3x-5}{x}=\frac{9x}{3x+2}=\frac{9x-15}{3x}=\frac{9x-\left(9x-15\right)}{\left(3x+2\right)-3x}=\frac{15}{2};\frac{9x}{3x+2}=\frac{15}{2}\Leftrightarrow18x=45x+30\Leftrightarrow27x+30=0\Leftrightarrow x=\frac{-10}{9}\) \(e,\frac{x+2}{6}=\frac{5x-1}{5}\Leftrightarrow5\left(x+2\right)=6\left(5x-1\right)\Leftrightarrow5x+10=30x-6\Leftrightarrow10=25x-6\Leftrightarrow25x=16\Leftrightarrow x=\frac{16}{25}\)
\(\frac{x+2}{x+6}=\frac{3}{x+1}\)
\(\Rightarrow\left(x+2\right)\left(x+1\right)=3\left(x+6\right)\)
\(\Rightarrow x^2+x+2x+2=3x+18\)
\(\Rightarrow x^2+x+2x-3x=18-2\)
\(\Rightarrow x^2=16\)
\(\Rightarrow x=\pm4\)
các phần còn lại tương tự :)
a)\(\frac{x+2}{x+6}\) =\(\frac{3}{x+1}\)
<=>\(\frac{\left(x+2\right)\left(x+1\right)}{\left(x+6\right)\left(x+1\right)}\) =\(\frac{3\left(x+6\right)}{\left(x+1\right)\left(x+6\right)}\)
=> ( x+2) ( x+1) = 3(x+6)
<=> x2 +3x +3 = 3x +18
<=> x2 +3x -3x = 18 -3
<=> x2 = 15
=> x = \(\sqrt{15}\)
Vậy x=\(\sqrt{15}\)
b)
a) \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+.........+\frac{2}{x\left(x+1\right)}=\frac{1998}{2000}\)
\(\Leftrightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+.......+\frac{2}{x\left(x+1\right)}=\frac{1998}{2000}\)
\(\Leftrightarrow2.\left[\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+......+\frac{1}{x\left(x+1\right)}\right]=\frac{1998}{2000}\)
\(\Leftrightarrow\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+......+\frac{1}{x\left(x+1\right)}=\frac{999}{2000}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+......+\frac{1}{x}-\frac{1}{x+1}=\frac{999}{2000}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{999}{2000}\)\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2000}\)
\(\Leftrightarrow x+1=2000\)\(\Leftrightarrow x=1999\)
Vậy \(x=1999\)
b) \(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+......+\frac{1}{\left(2x+1\right)\left(2x+3\right)}=\frac{15}{93}\)
\(\Leftrightarrow\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+.....+\frac{2}{\left(2x+1\right)\left(2x+3\right)}=\frac{15.2}{93}\)
\(\Leftrightarrow\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+......+\frac{1}{2x+1}-\frac{1}{2x+3}=\frac{10}{31}\)
\(\Leftrightarrow\frac{1}{3}-\frac{1}{2x+3}=\frac{10}{31}\)
\(\Leftrightarrow\frac{1}{2x+3}=\frac{1}{93}\)\(\Leftrightarrow2x+3=93\)
\(\Leftrightarrow2x=90\)\(\Leftrightarrow x=45\)
Vậy \(x=45\)
a) \(\frac{1}{4}+\frac{3}{4}x=\frac{3}{4}\Leftrightarrow\frac{3}{4}x=\frac{1}{2}\Leftrightarrow x=\frac{1}{2}\times\frac{4}{3}\Leftrightarrow x=\frac{2}{3}\)
b)\(1\frac{3}{4}x+1\frac{1}{2}=-\frac{4}{5}\Leftrightarrow\frac{7}{4}x+\frac{3}{2}=-\frac{4}{5}\Leftrightarrow\frac{7}{4}x=-\frac{23}{10}\)
\(\Leftrightarrow x=-\frac{23}{10}\times\frac{4}{7}\Leftrightarrow x=-\frac{46}{35}\)
c)\(\frac{3}{4}x+\frac{2}{5}x=1,2\Leftrightarrow x\left(\frac{3}{4}+\frac{2}{5}\right)=1,2\Leftrightarrow\frac{23}{20}x=1,2\)
\(\Leftrightarrow x=1,2\times\frac{20}{23}\Leftrightarrow x=\frac{24}{23}\)
d)\(\frac{3}{7}+\frac{1}{7}:x=\frac{3}{14}\Leftrightarrow\frac{1}{7x}=\frac{3}{14}-\frac{3}{7}\Leftrightarrow\frac{1}{7x}=-\frac{3}{14}\Leftrightarrow14=-3\times7x\)
\(\Leftrightarrow-21x=14\Leftrightarrow x=-\frac{2}{3}\)
e) \(-\frac{3}{4}-\left|\frac{4}{5}-x\right|=-1\Leftrightarrow\left|\frac{4}{5}-x\right|=-\frac{3}{4}+1\Leftrightarrow\left|\frac{4}{5}-x\right|=\frac{1}{4}\)
\(\Leftrightarrow\left[{}\begin{matrix}\frac{4}{5}-x=\frac{1}{4}\\\frac{4}{5}-x=-\frac{1}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{11}{20}\\x=\frac{21}{20}\end{matrix}\right.\)
a, \(\frac{1}{4}+\frac{3}{4}x=\frac{3}{4}\\ \Rightarrow\frac{3}{4}x=\frac{1}{2}\\ \Rightarrow x=\frac{2}{3}\)
Vậy \(x=\frac{2}{3}\)
b, \(1\frac{3}{4}x+1\frac{1}{2}=\frac{-4}{5}\\ \frac{7}{4}x+\frac{3}{2}=\frac{-4}{5}\\ \Rightarrow\frac{7}{4}x=\frac{-23}{10}\\ \Rightarrow x=\frac{-46}{35}\)
Vậy \(x=\frac{-46}{35}\)
c, \(\frac{3}{4}x+\frac{2}{5}x=1,2\\ x\left(\frac{3}{4}+\frac{2}{5}\right)=\frac{6}{5}\\ x\cdot\frac{23}{20}=\frac{6}{5}\\ \Rightarrow x=\frac{24}{23}\)
Vậy \(x=\frac{24}{23}\)
d, \(\frac{3}{7}+\frac{1}{7}:x=\frac{3}{14}\\ \Rightarrow\frac{1}{7}:x=\frac{-3}{14}\\ \Rightarrow x=\frac{-2}{3}\)
Vậy \(x=\frac{-2}{3}\)
e, \(\frac{-3}{4}-\left|\frac{4}{5}-x\right|=-1\\ \Rightarrow\left|\frac{4}{5}-x\right|=\frac{1}{4}\\ \Rightarrow\left[{}\begin{matrix}\frac{4}{5}-x=\frac{1}{4}\\\frac{4}{5}-x=\frac{-1}{4}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{11}{20}\\x=\frac{21}{20}\end{matrix}\right.\)
Vậy \(x\in\left\{\frac{11}{20};\frac{21}{20}\right\}\)
a) \(\frac{x-3}{x+5}=\frac{5}{7}\)
\(\Rightarrow\left(x-3\right).7=\left(x+5\right).5\)
\(\Rightarrow7x-21=5x+25\)
\(\Rightarrow7x-5x=21+25\)
\(\Rightarrow2x=46\)
\(\Rightarrow x=23\)
Vậy \(x=23\)
b) \(\frac{7}{x-1}=\frac{x+1}{9}\)
\(\Rightarrow\left(x-1\right).\left(x+1\right)=7.9\)
\(\Rightarrow\left(x-1\right)x-\left(x+1\right)=7.9\)
\(\Rightarrow x^2-x-x-1=63\)
\(\Rightarrow x^2-1=63\)
\(\Rightarrow x^2=64\)
\(\Rightarrow x=8\) hoặc \(x=-8\)
Vậy \(x=8\) hoặc \(x=-8\)
c) \(\frac{x+4}{20}=\frac{5}{x+4}\)
\(\Rightarrow\left(x+4\right)^2=100\)
\(\Rightarrow x+4=\pm10\)
+) \(x+4=10\Rightarrow x=6\)
+) \(x+4=-10\Rightarrow x=-16\)
Vậy \(x\in\left\{6;-16\right\}\)
Bài này khá ez thôi:
a) bạn sửa lại đề rồi làm theo cách làm của b,c,d nhé
b) Ta có: \(\left|x+1,1\right|+\left|x+1,2\right|+\left|x+1,3\right|+\left|x+1,4\right|\ge0\left(\forall x\right)\)
\(\Rightarrow5x\ge0\Rightarrow x\ge0\) khi đó:
\(PT\Leftrightarrow x+1,1+x+1,2+x+1,3+x+1,4=5x\)
\(\Leftrightarrow x=5\)
c,d tương tự nhé
c,\(\left|x+\frac{1}{1.3}\right|+\left|x+\frac{1}{3.5}+\right|+...+\left|x+\frac{1}{97.99}\right|\ge0\forall x\)
\(\Rightarrow50x\ge0\Rightarrow x\ge0\)Khi đó:
\(x+\frac{1}{1.3}+x+\frac{1}{3.5}+...+x+\frac{1}{97.99}=50x\)
\(\Rightarrow49x+\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{97.99}\right)=50x\)
\(\Leftrightarrow x=\frac{1}{2}\left(1-\frac{1}{99}\right)=\frac{49}{99}\)