\(\frac{1}{2}\)/ = 4X 

b ) / x + 1,1 / + / x + 1,2...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2020

Bài này khá ez thôi: 

a) bạn sửa lại đề rồi làm theo cách làm của b,c,d nhé

b) Ta có: \(\left|x+1,1\right|+\left|x+1,2\right|+\left|x+1,3\right|+\left|x+1,4\right|\ge0\left(\forall x\right)\)

\(\Rightarrow5x\ge0\Rightarrow x\ge0\) khi đó:

\(PT\Leftrightarrow x+1,1+x+1,2+x+1,3+x+1,4=5x\)

\(\Leftrightarrow x=5\)

c,d tương tự nhé

6 tháng 10 2020

c,\(\left|x+\frac{1}{1.3}\right|+\left|x+\frac{1}{3.5}+\right|+...+\left|x+\frac{1}{97.99}\right|\ge0\forall x\)

\(\Rightarrow50x\ge0\Rightarrow x\ge0\)Khi đó:

\(x+\frac{1}{1.3}+x+\frac{1}{3.5}+...+x+\frac{1}{97.99}=50x\)

\(\Rightarrow49x+\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{97.99}\right)=50x\)

\(\Leftrightarrow x=\frac{1}{2}\left(1-\frac{1}{99}\right)=\frac{49}{99}\)

25 tháng 6 2019

\(a,\frac{x-1}{21}=\frac{3}{x+1}\)

\(\Leftrightarrow\left[x-1\right]\left[x+1\right]=63\)

\(\Leftrightarrow x^2-1=63\)

\(\Leftrightarrow x^2=64\)

\(\Leftrightarrow x^2=8^2\)

\(\Leftrightarrow x=\pm8\)

25 tháng 6 2019

\(b,\frac{7}{x}+\frac{4}{5\cdot9}+\frac{4}{9\cdot13}+\frac{4}{13\cdot17}+...+\frac{4}{41\cdot45}=\frac{29}{45}\)

\(\Leftrightarrow\frac{7}{x}+\left[\frac{4}{5\cdot9}+\frac{4}{9\cdot13}+\frac{4}{13\cdot17}+...+\frac{4}{41\cdot45}\right]=\frac{29}{45}\)

\(\Leftrightarrow\frac{7}{x}+\left[\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{41}-\frac{1}{45}\right]=\frac{29}{45}\)

\(\Leftrightarrow\frac{7}{x}+\left[\frac{1}{5}-\frac{1}{45}\right]=\frac{29}{45}\)

\(\Leftrightarrow\frac{7}{x}+\frac{8}{45}=\frac{29}{45}\)

\(\Leftrightarrow\frac{7}{x}=\frac{21}{45}\)

\(\Leftrightarrow\frac{7}{x}=\frac{7}{15}\)

\(\Leftrightarrow x=15\)

Vậy x = 15

Bài cuối tương tự

14 tháng 8 2017

X+(1/1.3+1/3.5+1/5.7+...+1/99.101)=100

X+(2/1.3+2/3.5+2/5.7+...+2/99.101)=100

X+(1 -1/3+1/3-1/5+1/5-1/7+...+1/99-1/101)=100

X+(1-1/101)=100

X+100/101=100

X=100-100/101

X=10000/101

28 tháng 6 2019

\(a,\frac{3x+2}{5x+7}=\frac{3x-1}{5x-1}=\frac{\left(3x+2\right)-\left(3x-1\right)}{\left(5x+7\right)-\left(5x-1\right)}=\frac{3}{8};\frac{3x+2}{5x+7}=\frac{3}{8}\Leftrightarrow24x+16=15x+21\Leftrightarrow9x=5\Leftrightarrow x=\frac{5}{9}\) \(b,\frac{37-x}{x+13}=\frac{3}{7}\Leftrightarrow37.7-7x=3x+39\Leftrightarrow259-7x=3x+39\Leftrightarrow220-7x=3x\Leftrightarrow10x=220\Leftrightarrow x=22\) \(c,\frac{x+1}{2x+1}=\frac{0,5x+2}{x+3}=\frac{x+4}{2x+6}=\frac{\left(x+4\right)-\left(x+1\right)}{2x+6-\left(2x+1\right)}=\frac{3}{5};\frac{x+1}{2x+1}=\frac{3}{5}\Leftrightarrow5x+5=6x+3\Leftrightarrow x=2\) \(d,\frac{x-2}{x+2}=\frac{x+3}{x-4}=\frac{\left(x+3\right)-\left(x-2\right)}{\left(x-4\right)-\left(x+2\right)}=\frac{5}{-6};\frac{x-2}{x+2}=\frac{5}{-6}\Leftrightarrow6\left(2-x\right)=5x+10\Leftrightarrow2-6x=5x\Leftrightarrow x=\frac{2}{11}\) \(f,\frac{3x-5}{x}=\frac{9x}{3x+2}=\frac{9x-15}{3x}=\frac{9x-\left(9x-15\right)}{\left(3x+2\right)-3x}=\frac{15}{2};\frac{9x}{3x+2}=\frac{15}{2}\Leftrightarrow18x=45x+30\Leftrightarrow27x+30=0\Leftrightarrow x=\frac{-10}{9}\) \(e,\frac{x+2}{6}=\frac{5x-1}{5}\Leftrightarrow5\left(x+2\right)=6\left(5x-1\right)\Leftrightarrow5x+10=30x-6\Leftrightarrow10=25x-6\Leftrightarrow25x=16\Leftrightarrow x=\frac{16}{25}\)

7 tháng 8 2018

\(\frac{x+2}{x+6}=\frac{3}{x+1}\)

\(\Rightarrow\left(x+2\right)\left(x+1\right)=3\left(x+6\right)\)

\(\Rightarrow x^2+x+2x+2=3x+18\)

\(\Rightarrow x^2+x+2x-3x=18-2\)

\(\Rightarrow x^2=16\)

\(\Rightarrow x=\pm4\)

các phần còn lại tương tự :)

7 tháng 8 2018

a)\(\frac{x+2}{x+6}\) =\(\frac{3}{x+1}\)

<=>\(\frac{\left(x+2\right)\left(x+1\right)}{\left(x+6\right)\left(x+1\right)}\) =\(\frac{3\left(x+6\right)}{\left(x+1\right)\left(x+6\right)}\)

=> ( x+2) ( x+1) = 3(x+6)

<=>  x2 +3x +3 = 3x +18

<=> x2 +3x -3x = 18 -3 

<=> x2              = 15

 => x                 = \(\sqrt{15}\)

 Vậy x=\(\sqrt{15}\)

b)

27 tháng 9 2020

a) \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+.........+\frac{2}{x\left(x+1\right)}=\frac{1998}{2000}\)

\(\Leftrightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+.......+\frac{2}{x\left(x+1\right)}=\frac{1998}{2000}\)

\(\Leftrightarrow2.\left[\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+......+\frac{1}{x\left(x+1\right)}\right]=\frac{1998}{2000}\)

\(\Leftrightarrow\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+......+\frac{1}{x\left(x+1\right)}=\frac{999}{2000}\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+......+\frac{1}{x}-\frac{1}{x+1}=\frac{999}{2000}\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{999}{2000}\)\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2000}\)

\(\Leftrightarrow x+1=2000\)\(\Leftrightarrow x=1999\)

Vậy \(x=1999\)

b) \(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+......+\frac{1}{\left(2x+1\right)\left(2x+3\right)}=\frac{15}{93}\)

\(\Leftrightarrow\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+.....+\frac{2}{\left(2x+1\right)\left(2x+3\right)}=\frac{15.2}{93}\)

\(\Leftrightarrow\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+......+\frac{1}{2x+1}-\frac{1}{2x+3}=\frac{10}{31}\)

\(\Leftrightarrow\frac{1}{3}-\frac{1}{2x+3}=\frac{10}{31}\)

\(\Leftrightarrow\frac{1}{2x+3}=\frac{1}{93}\)\(\Leftrightarrow2x+3=93\)

\(\Leftrightarrow2x=90\)\(\Leftrightarrow x=45\)

Vậy \(x=45\)

4 tháng 8 2019

a) \(\frac{1}{4}+\frac{3}{4}x=\frac{3}{4}\Leftrightarrow\frac{3}{4}x=\frac{1}{2}\Leftrightarrow x=\frac{1}{2}\times\frac{4}{3}\Leftrightarrow x=\frac{2}{3}\)

b)\(1\frac{3}{4}x+1\frac{1}{2}=-\frac{4}{5}\Leftrightarrow\frac{7}{4}x+\frac{3}{2}=-\frac{4}{5}\Leftrightarrow\frac{7}{4}x=-\frac{23}{10}\)

\(\Leftrightarrow x=-\frac{23}{10}\times\frac{4}{7}\Leftrightarrow x=-\frac{46}{35}\)

c)\(\frac{3}{4}x+\frac{2}{5}x=1,2\Leftrightarrow x\left(\frac{3}{4}+\frac{2}{5}\right)=1,2\Leftrightarrow\frac{23}{20}x=1,2\)

\(\Leftrightarrow x=1,2\times\frac{20}{23}\Leftrightarrow x=\frac{24}{23}\)

d)\(\frac{3}{7}+\frac{1}{7}:x=\frac{3}{14}\Leftrightarrow\frac{1}{7x}=\frac{3}{14}-\frac{3}{7}\Leftrightarrow\frac{1}{7x}=-\frac{3}{14}\Leftrightarrow14=-3\times7x\)

\(\Leftrightarrow-21x=14\Leftrightarrow x=-\frac{2}{3}\)

e) \(-\frac{3}{4}-\left|\frac{4}{5}-x\right|=-1\Leftrightarrow\left|\frac{4}{5}-x\right|=-\frac{3}{4}+1\Leftrightarrow\left|\frac{4}{5}-x\right|=\frac{1}{4}\)

\(\Leftrightarrow\left[{}\begin{matrix}\frac{4}{5}-x=\frac{1}{4}\\\frac{4}{5}-x=-\frac{1}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{11}{20}\\x=\frac{21}{20}\end{matrix}\right.\)

4 tháng 8 2019

a, \(\frac{1}{4}+\frac{3}{4}x=\frac{3}{4}\\ \Rightarrow\frac{3}{4}x=\frac{1}{2}\\ \Rightarrow x=\frac{2}{3}\)

Vậy \(x=\frac{2}{3}\)

b, \(1\frac{3}{4}x+1\frac{1}{2}=\frac{-4}{5}\\ \frac{7}{4}x+\frac{3}{2}=\frac{-4}{5}\\ \Rightarrow\frac{7}{4}x=\frac{-23}{10}\\ \Rightarrow x=\frac{-46}{35}\)

Vậy \(x=\frac{-46}{35}\)

c, \(\frac{3}{4}x+\frac{2}{5}x=1,2\\ x\left(\frac{3}{4}+\frac{2}{5}\right)=\frac{6}{5}\\ x\cdot\frac{23}{20}=\frac{6}{5}\\ \Rightarrow x=\frac{24}{23}\)

Vậy \(x=\frac{24}{23}\)

d, \(\frac{3}{7}+\frac{1}{7}:x=\frac{3}{14}\\ \Rightarrow\frac{1}{7}:x=\frac{-3}{14}\\ \Rightarrow x=\frac{-2}{3}\)

Vậy \(x=\frac{-2}{3}\)

e, \(\frac{-3}{4}-\left|\frac{4}{5}-x\right|=-1\\ \Rightarrow\left|\frac{4}{5}-x\right|=\frac{1}{4}\\ \Rightarrow\left[{}\begin{matrix}\frac{4}{5}-x=\frac{1}{4}\\\frac{4}{5}-x=\frac{-1}{4}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{11}{20}\\x=\frac{21}{20}\end{matrix}\right.\)

Vậy \(x\in\left\{\frac{11}{20};\frac{21}{20}\right\}\)

1) Tính: 1. (-3)2 . (\(\frac{3}{4}\) - 0,25) - (3\(\frac{1}{2}\) - 1\(\frac{1}{2}\)) 2. \(\frac{13}{25}\) + \(\frac{6}{41}\) - \(\frac{38}{25}\) + \(\frac{35}{41}\) - \(\frac{1}{2}\) 3. \(\frac{1}{2}\).\(\sqrt{64}\) - \(\sqrt{\frac{4}{25}}\) + (-1)2007 4. (-\(\frac{5}{2}\))2 : (-15) - (-0,45 + \(\frac{3}{4}\)) . (-1\(\frac{5}{9}\)) 5. E = \(\frac{4^5.9^4-2.6^9}{2^{10}.3^8+6^8.20}\) \(\frac{5^4.20^4}{25^5.4^5}\) 2) Tìm x: 1. 3,2x + (-1,2)x +2,7 = -4,9 2. (giá trị tuyệt đói...
Đọc tiếp

1) Tính:

1. (-3)2 . (\(\frac{3}{4}\) - 0,25) - (3\(\frac{1}{2}\) - 1\(\frac{1}{2}\))

2. \(\frac{13}{25}\) + \(\frac{6}{41}\) - \(\frac{38}{25}\) + \(\frac{35}{41}\) - \(\frac{1}{2}\)

3. \(\frac{1}{2}\).\(\sqrt{64}\) - \(\sqrt{\frac{4}{25}}\) + (-1)2007

4. (-\(\frac{5}{2}\))2 : (-15) - (-0,45 + \(\frac{3}{4}\)) . (-1\(\frac{5}{9}\))

5. E = \(\frac{4^5.9^4-2.6^9}{2^{10}.3^8+6^8.20}\)

\(\frac{5^4.20^4}{25^5.4^5}\)

2) Tìm x:

1. 3,2x + (-1,2)x +2,7 = -4,9

2. (giá trị tuyệt đói của x) - 2,2 = 1,3

3. (giá trị tuyệt đối của x + \(\frac{3}{4}\)) - \(\frac{1}{3}\) = 0

4. (giá trị tuyệt đối của x - 1,5) + (giá trị tuyệt đối của 2,5 - x) = 0

5. \(\frac{3}{4}\) : \(\frac{41}{99}\) = x : \(\frac{75}{90}\); 0,4 : x = x : 0,9

6. (2x + 3 )2 = 25

7. (\(\frac{2}{3}\)x -1)(\(\frac{3}{4}\)x + \(\frac{1}{2}\)) = 0

8. x : \(\frac{9}{14}\) = \(\frac{7}{3}\) : x

9. (x - \(\frac{1}{2}\))3 = \(\frac{1}{27}\)

10. (-\(\frac{2}{3}\))2 . x = (-\(\frac{2}{3}\))5

11. \(\frac{37-x}{x+13}\) = \(\frac{3}{7}\)

12. \(\frac{x}{-15}\) = \(\frac{-60}{x}\)

13. \(\frac{-2}{x}\) = \(\frac{-x}{\frac{8}{25}}\)

3) Tìm x, y, z biết:

1. \(\frac{x}{15}\) = \(\frac{y}{20}\) = \(\frac{z}{28}\) và 2x + 3y - 2 = 186

2. 2x = 3y; 5x = 7z và 3x - 7y + 5z = 30

3. \(\frac{x^2}{9}\) = \(\frac{y^2}{16}\) và x2 + y2 = 100

7
23 tháng 12 2019

lol

25 tháng 12 2019
3.1.\(\frac{x}{15}\)=\(\frac{y}{20}\)=\(\frac{z}{28}\)=\(\frac{2x}{30}\)=\(\frac{3y}{60}\)=\(\frac{2x+3y-z}{30+60-28}\)=\(\frac{186}{62}\)=3
=> x=3*15=45
y=3*20=60
z=3*28=84
11 tháng 10 2016

a) \(\frac{x-3}{x+5}=\frac{5}{7}\)

\(\Rightarrow\left(x-3\right).7=\left(x+5\right).5\)

\(\Rightarrow7x-21=5x+25\)

\(\Rightarrow7x-5x=21+25\)

\(\Rightarrow2x=46\)

\(\Rightarrow x=23\)

Vậy \(x=23\)

11 tháng 10 2016

b) \(\frac{7}{x-1}=\frac{x+1}{9}\)

\(\Rightarrow\left(x-1\right).\left(x+1\right)=7.9\)

\(\Rightarrow\left(x-1\right)x-\left(x+1\right)=7.9\)

\(\Rightarrow x^2-x-x-1=63\)

\(\Rightarrow x^2-1=63\)

\(\Rightarrow x^2=64\)

\(\Rightarrow x=8\) hoặc \(x=-8\)

Vậy \(x=8\) hoặc \(x=-8\)

c) \(\frac{x+4}{20}=\frac{5}{x+4}\)

\(\Rightarrow\left(x+4\right)^2=100\)

\(\Rightarrow x+4=\pm10\)

+) \(x+4=10\Rightarrow x=6\)

+) \(x+4=-10\Rightarrow x=-16\)

Vậy \(x\in\left\{6;-16\right\}\)