Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Đồ thị được vẽ như hình bên.
b) Giao của đường thẳng y = -x + 2 với Ox là B(2; 0).
Vì hai đường thẳng y = 0,5x + 2 và y = -x + 2 đều có tung độ gốc là 2 nên giao của chúng là C(0; 2).
Ta có tg A = 0,5. Suy ra ≈ 26034’.
Vì ∆BOC là tam giác vuông cân nên =450 .
Suy ra ≈ 1800 – (26034’ + 450) = 108026’.
c) Ta có AB = 6 (cm), AC = = 2√5 (cm), BC = 2√2 (cm).
Do đó chu vi của ∆ABC là 6 + 2√5 + 2√2 (cm).
Diện tích của ∆ABC là: AB . OC =
. 6 . 2 = 6 (cm2).
Bài giải:
a) Đồ thị được vẽ như hình bên.
b) Giao của đường thẳng y = -x + 2 với Ox là B(2; 0).
Vì hai đường thẳng y = 0,5x + 2 và y = -x + 2 đều có tung độ gốc là 2 nên giao của chúng là C(0; 2).
Ta có tg A = 0,5. Suy ra ≈ 26034’.
Vì ∆BOC là tam giác vuông cân nên =450 .
Suy ra ≈ 1800 – (26034’ + 450) = 108026’.
c) Ta có AB = 6 (cm), AC = = 2√5 (cm), BC = 2√2 (cm).
Do đó chu vi của ∆ABC là 6 + 2√5 + 2√2 (cm).
Diện tích của ∆ABC là: AB . OC =
. 6 . 2 = 6 (cm2).
![](https://rs.olm.vn/images/avt/0.png?1311)
a) (d1): y = (m+2)x - m + 1 có hệ số a1 = m+2, b1 = -m +1
(d2): y = (2m-5)x + m có hệ số a2 = 2m - 5, b2 = m
Vậy khi m = 7 thì (d1) song song với (d2)
Bài 2: Cho đường thẳng (AB): y = -1/3x + 2/3; (BC): y = 5x+1; (CA): y = 3x. Xác định tọa độ ba đỉnh của tam giác ABC
Hướng dẫn giải
Điểm B là giao điểm của (AB) và (BC):
Phương trình hoành độ giao điểm B:
Điểm A là giao điểm của (AB) và (AC) nên:
Phương trình hoành độ giao điểm A:
-1/3x + 2/3 = 3x
⇔ 3x + 1/3x = 2/3
⇔ x.10/3 = 2/3
⇔ x = 1/5
=> y = 3.1/5 = 3/5
Vậy A(1/5;3/5)
Điểm C là giao điểm của (BC) và (AC) nên:
Phương trình hoành độ giao điểm C:
5x + 1 = 3x
⇔ 2x = -1
⇔ x = -1/2
> y = 3.(-1/2) = -3/2
Vậy C(-1/2;-3/2)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài giải:
a) Xem hình bên
b) A(-1; 0), B(3; 0), C(1; 2).
c) Chu vi ∆ABC bằng 4(1 + √2).
Diện tích ∆ABC bằng 4cm2 .
![](https://rs.olm.vn/images/avt/0.png?1311)
\(T=x^4+y^4+z^4\)
áp dụng bđt bunhia cốp -xki với bộ số \(\left(x^2,y^2,z^2\right);\left(1,1,1\right)\)
\(\left(\left[x^2\right]^2+\left[y^2\right]^2+\left[z^2\right]^2\right)\left(1^2+1^2+1^2\right)\ge\left(x^2+y^2+z^2\right)^2\)
\(\left(x^4+y^4+z^4\right)\ge\frac{\left(x^2+y^2+z^2\right)^2}{3}\)
\(\left(x^4+y^4+z^4\right)\ge\frac{\left(2xy+2yz+2xz\right)^2}{3}\)(bđt tương đương)
\(\left(x^4+y^4+z^4\right)\ge\frac{4}{3}\)
dấu "=" xảy rakhi và chỉ khi
\(\hept{\begin{cases}\frac{x^2}{1}=\frac{y^2}{1}=\frac{z^2}{1}\\x=y=z=1\end{cases}< =>\frac{1^2}{1}=\frac{1^2}{1}=\frac{1^2}{1}}\)(luôn đúng)
vậy dấu "=" có xảy ra
\(< =>MIN:T=\frac{4}{3}\)
sửa dòng 3 dưới lên
\(T\ge\frac{\left(xy+yz+xz\right)^2}{3}=\frac{1}{3}\)
Dấu ''='' xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}\)
Vậy GTNN T là 1/3 khi \(x=y=z=\frac{\sqrt{3}}{3}\)