Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài giải
Gọi hệ trục Oxyz với A(0;0;0), B(a;0;0), C(a;a;0), D(0;a;0). Gọi S(p;q;h).
SA = SB = a:
p² + q² + h² = a²
(p - a)² + q² + h² = a² ⇒ p = a/2
SC = a√3:
a²/4 + (q - a)² + h² = 3a²
Từ SA: q² + h² = 3a²/4 ⇒ a²/4 + q² - 2aq + a² + h² = 3a²
2a² - 2aq = 3a² ⇒ q = -a/2 ⇒ h² = a²/2 ⇒ h = a√2/2
S(a/2; -a/2; a√2/2)
H(a/4; -a/4; a√2/4), K(3a/4; -a/4; a√2/4)
M(x; x; 0), 0 ≤ x ≤ a
N(a; t; 0) ∈ BC
HK = (a/2; 0; 0)
HM = (x - a/4; x + a/4; -a√2/4)
n = HK × HM = (0; a²√2/8; a/2(x + a/4))
Mặt phẳng (HKM): (a²√2/8)(y + a/4) + (a/2)(x + a/4)(z - a√2/4) = 0
Với N(a; t; 0): t = x ⇒ N(a; x; 0)
HK = a/2, MN = a - x
d = √[(x + a/4)² + a²/8]
S = (a/2 + a - x)/2 × d = (3a/2 - x)/2 × √[(x + a/4)² + a²/8]
Giải S'(x) = 0 ⇒ x = 5a/8
Kết luận: x = 5a/8 thì diện tích HKMN nhỏ nhất
Cho mình xin 1 tick với ạ

\(A=\left(1+\frac{1}{3}\right)\left(1+\frac{1}{8}\right).....\left(1+\frac{1}{9999}\right)\)
\(=\frac{4}{3}.\frac{9}{8}.....\frac{10000}{9999}\)
\(=\frac{2.2}{1.3}.\frac{3.3}{2.4}.....\frac{100.100}{99.101}\)
\(=\frac{2.3.....100}{1.2.....99}.\frac{2.3.....100}{3.4.....101}\)
=\(=100.\frac{2}{101}=\frac{200}{101}\)
\(A=\left(1+\frac{1}{3}\right)\left(1+\frac{1}{8}\right)\left(1+\frac{1}{15}\right).....\left(1+\frac{1}{9999}\right)\)
\(=\frac{4}{3}.\frac{9}{8}.\frac{16}{15}......\frac{10000}{9999}\)
\(=\frac{2.2}{1.3}.\frac{3.3}{2.4}.\frac{4.4}{3.5}.....\frac{100.100}{99.101}\)
\(=\frac{2.3.4....100}{1.2.3....99}.\frac{2.3.4.....100}{3.4.5.....101}\)
\(=100.\frac{2}{101}\)
\(=\frac{200}{101}\)
a, Ta có: \(\dfrac{4}{2}=2;\dfrac{8}{4}=2;\dfrac{16}{8}=2;\dfrac{32}{16}=2;\dfrac{64}{32}=2\)
b, Ta thấy:
i, Số sai bằng số liền trước nhân với 2.
ii, Số sau bằng số liền trước nhân với \(\dfrac{1}{2}\)
iii, Số sau bằng số liền trước nhân với -3.
Điểm giống nhau của các dãy số này là số sau bằng số liền trước nhân với một số không đổi.
tham khảo.