Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. ĐKXĐ: $x\geq 5$
PT $\Leftrightarrow \sqrt{4}.\sqrt{x-5}+\sqrt{x-5}=4+3.\sqrt{\frac{1}{9}}.\sqrt{x-5}$
$\Leftrightarrow 2\sqrt{x-5}+\sqrt{x-5}=4+\sqrt{x-5}$
$\Leftrightarrow 2\sqrt{x-5}=4$
$\Leftrightarrow \sqrt{x-5}=2$
$\Leftrightarrow x-5=4$
$\Leftrightarrow x=9$ (tm)
b. Sửa đoạn 4x-45 thành 4x-20.
ĐKXĐ: $x\geq 5$
PT $\Leftrightarrow \sqrt{4}.\sqrt{x-5}+\sqrt{\frac{1}{9}}.\sqrt{x-5}-\frac{1}{3}\sqrt{4}.\sqrt{x-5}=4$
$\Leftrightarrow 2\sqrt{x-5}+\frac{1}{3}\sqrt{x-5}-\frac{2}{3}\sqrt{x-5}=4$
$\Leftrightarrow \frac{5}{3}\sqrt{x-5}=4$
$\Leftrightarrow \sqrt{x-5}=\frac{12}{5}$
$\Leftrightarrow x-5=\frac{144}{25}=5,76$
$\Leftrightarrow x=10,76$ (tm)
1.a) \(\sqrt{x^2-4}-\sqrt{x-2}=0\)
\(\Leftrightarrow\sqrt{\left(x-2\right)\left(x+2\right)}-\sqrt{x-2}=0\)
\(\Leftrightarrow\sqrt{x-2}.\sqrt{x+2}-\sqrt{x-2}=0\)
\(\Leftrightarrow\sqrt{x-2}.\left(\sqrt{x+2}-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x-2}=0\\\sqrt{x+2}-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\\sqrt{x+2}=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x+2=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}\)
Vậy x=2 hoặc x=-1
\(dat:\sqrt{x-5}=a\Rightarrow\sqrt{4\left(x-5\right)}+\sqrt{x-5}-\frac{1}{3}=\sqrt{9\left(x-5\right)}\Rightarrow\sqrt{4}.a+a-\frac{1}{3}=\sqrt{9}.a\Rightarrow3a-\frac{1}{3}=3a\left(voli\right)\Rightarrow vonghiem\)
câu a chắc đề như zầy pk bạn???
\(\sqrt{4x-20}+\sqrt{x-5}-\frac{1}{3}+\sqrt{9x-45}=4\)
\(pt\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}+3\sqrt{x-5}=\frac{13}{3}\)
\(\Leftrightarrow6\sqrt{x-5}=\frac{13}{3}\Rightarrow\sqrt{x-5}=\frac{13}{18}\Leftrightarrow x=\frac{1789}{324}\)
b)đề như này đúng ko bạn??
\(\sqrt{16-32x}-\sqrt{12x}=\sqrt{3x}+\sqrt{9-18x}\)
\(\Leftrightarrow4\sqrt{1-2x}-2\sqrt{3x}=\sqrt{3x}+3\sqrt{1-2x}\)
\(\Leftrightarrow\sqrt{1-2x}-3\sqrt{3x}=0\Leftrightarrow\sqrt{1-2x}=3\sqrt{3x}\)
\(\Leftrightarrow1-2x=27x\Leftrightarrow x=\frac{1}{29}\)
câu c\(\sqrt{4x-20}-3\sqrt{\frac{x-5}{9}}=\sqrt{1-x}\)
Xét điều kiện \(\left\{{}\begin{matrix}x\le1\\x\ge5\end{matrix}\right.\)không tồn tại số nào nằm trong khoảng này
Vậy pt trên vô nghiệm
a. \(\Rightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\Rightarrow\sqrt{x+5}\left(2-3+4\right)=6\Rightarrow\sqrt{x+5}=2\Rightarrow x+5=4\Rightarrow x=-1\)
b.\(\Rightarrow5\sqrt{x-1}-\frac{5}{2}\sqrt{x-1}-\sqrt{x-1}=6\Rightarrow\sqrt{x-1}\left(5-\frac{5}{2}-1\right)=6\Rightarrow\sqrt{x-1}=4\Rightarrow x-1=16\Rightarrow x=17\)
\(a) \sqrt{4x^2− 9} = 2\sqrt{x + 3}\)
\(ĐK:x\ge\dfrac{3}{2}\)
\(pt\Leftrightarrow4x^2-9=4\left(x+3\right)\)
\(\Leftrightarrow4x^2-9=4x+12\)
\(\Leftrightarrow4x^2-4x-21=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1-\sqrt{22}}{2}\left(l\right)\\x=\dfrac{1+\sqrt{22}}{2}\left(tm\right)\end{matrix}\right.\)
\(b)\sqrt{4x-20}+3.\sqrt{\dfrac{x-5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=4\)
\(ĐK:x\ge5\)
\(pt\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)
\(\Leftrightarrow2\sqrt{x-5}=4\Leftrightarrow\sqrt{x-5}=2\)
\(\Leftrightarrow x-5=4\Leftrightarrow x=9\left(tm\right)\)
\(c)\dfrac{2}{3}\sqrt{9x-9}-\dfrac{1}{4}\sqrt{16x-16}+27.\sqrt{\dfrac{x-1}{81}}=4\)
ĐK:x>=1
\(pt\Leftrightarrow2\sqrt{x-1}-\sqrt{x-1}+3\sqrt{x-1}=4\)
\(\Leftrightarrow4\sqrt{x-1}=4\Leftrightarrow\sqrt{x-1}=1\)
\(\Leftrightarrow x-1=1\Leftrightarrow x=2\left(tm\right)\)
\(d)5\sqrt{\dfrac{9x-27}{25}}-7\sqrt{\dfrac{4x-12}{9}}-7\sqrt{x^2-9}+18\sqrt{\dfrac{9x^2-81}{81}}=0\)
\(ĐK:x\ge3\)
\(pt\Leftrightarrow3\sqrt{x-3}-\dfrac{14}{3}\sqrt{x-3}-7\sqrt{x^2-9}+6\sqrt{x^2-9}=0\)
\(\Leftrightarrow-\dfrac{5}{3}\sqrt{x-3}-\sqrt{x^2-9}=0\Leftrightarrow\dfrac{5}{3}\sqrt{x-3}+\sqrt{x^2-9}=0\)
\(\Leftrightarrow(\dfrac{5}{3}+\sqrt{x+3})\sqrt{x-3}=0\)
\(\Leftrightarrow\sqrt{x-3}=0\) (vì \(\dfrac{5}{3}+\sqrt{x+3}>0\))
\(\Leftrightarrow x-3=0\Leftrightarrow x=3\left(nhận\right)\)
a) ĐKXĐ: x ≥ 5
<=> x - 5 = 4
<=> x = 9 (thỏa mãn ĐKXĐ)