Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Vì \(ƯCLN\left(a,b\right)=16\Rightarrow\hept{\begin{cases}a=16.m\\b=16.n\end{cases};\left(m,n\right)=1;m,n\in N}\)
Thay a = 16.m, b = 16.n vào a+b = 128, ta có:
\(16.m+16.n=128\)
\(\Rightarrow16.\left(m+n\right)=128\)
\(\Rightarrow m+n=128\div16\)
\(\Rightarrow m+n=8\)
Vì m và n nguyên tố cùng nhau
\(\Rightarrow\) Ta có bảng giá trị:
m | 1 | 8 | 3 | 5 |
n | 8 | 1 | 5 | 3 |
a | 16 | 128 | 48 | 80 |
b | 128 | 16 | 80 | 48 |
Vậy các cặp (a,b) cần tìm là:
(16; 128); (128; 16); (48; 80); (80; 48).
Bài 2:
Gọi d là ƯCLN (2n+1, 2n+3), d \(\in\) N*
\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\2n+3⋮d\end{cases}}\)
\(\Rightarrow\left(2n+3\right)-\left(2n+1\right)⋮d\)
\(\Rightarrow2⋮d\)
\(\Rightarrow d\in\left\{1;2\right\}\)
Vì 2n+3 và 2n+1 không chia hết cho 2
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(2n+1,2n+3\right)=1\)
\(\Rightarrow\) 2n+1 và 2n+3 là hai số nguyên tố cùng nhau.
a, Gọi số cần tìm là a
Ta có: a chia 9 dư 5 => a - 5 chia hết cho 9 => 2(a - 5) chia hết cho 9 => 2a - 10 chia hết cho 9 => 2a - 10 + 9 chia hết cho 9 => 2a - 1 chia hết cho 9
a chia 7 dư 4 => a - 4 chia hết cho 7 => 2(a - 4) chia hết cho 7 => 2a - 8 chia hết cho 9 => 2a - 8 + 7 chia hết cho 7 => 2a - 1 chia hết cho 7
a chia 5 dư 3 => a - 3 chia hết cho 5 => 2(a - 3) chia hết cho 5 => 2a - 6 chia hết cho 5 => 2a - 6 + 5 chia hết cho 5 => 2a - 1 chia hết cho 5
=> 2a - 1 thuộc BC(5;7;9)
5 = 5
7 = 7
9 = 9
BCNN(5,7,9) = 5.7.9 = 315
=> 2a - 1 = 315 => 2a = 316 => a = 158
Vậy số cần tìm là 158
b, Ta có:
A = 1 + 2012 + 20122 + ... + 201272
2012A = 2012 + 20122 + 20123 +...+ 201273
2012A - A = (2012 + 20122 + 20123 + .... + 201273) - (1 + 2012 + 20122 + ... + 201272)
2011A = 201273 - 1
A = \(\frac{2012^{73}-1}{2011}\)
Vì \(\frac{2012^{73}-1}{2011}< 2012^{73}-1\) nên A < B
Vậy A < B
A = \(\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{57} +2^{58}+2^{59}+2^{60}\right)\)
\(=2.\left(1+2+2^2+2^3\right)+2^5.\left(1+2+2^2+2^3\right)+..2^{57}.\left(1+2+2^2+2^3\right)\)
\(=2.15+2^5.15+...+2^{57}.15\)
\(=15.\left(2+2^5+...+2^{57}\right)\text{chia hết cho 15}\)
\(=5.3.\left(2+2^5+...+2^{57}\right)\text{ chia hết cho 5}\left(1\right)\)
A = \(2.\left(1+2+2^2+2^3+2^4\right)+2^6.\left(1+2+2^2+2^3+2^4\right)+...+2^{56}.\left(1+2+2^2+2^3+2^4\right)\)
\(=2.31+2^6.31+...+2^{56}.31\)
\(=31.\left(2+2^6+...+2^{56}\right)\text{ chia hết cho 31}\left(2\right)\)
Từ (1) và (2) => A chia hết cho 5.31
B = 1 + A nên B chia 5,31 và 15 đều dư 1.