Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
CÂU1
a)
a= a^3+2a^2-1/a^3+2a^2+2a+1
a=(a+1)(a^2+a-1)/(a+1)(a^2+a+1)
a=a^2+a-1/a^2+a+1
b)
Gọi d là ước chung lớn nhất của a^2+a-1 và a^2+a+1
Vì a^2 + a -1=a(a=1)-1 là số lẻ nên d là số lẻ
Mặt khác, 2= [a^2+a+1-(a^2+a-1)] chia hết cho d
Nên d=1 tức là a^2+a+1 và a^2+a-1 là nguyên tố cùng nhau
Vậy biểu thức a là phân số tối giản
CÂU 6
Mỗi đường thẳng cắt 2005 đường thẳng còn lại tạo nên 2005 giao điểm. Mà có 2006 đường thẳng => có:(2005x2006):2 =1003x 2005 = 2011015 ( giao điểm)
Gọi 5 số nguyên điền vào 5 đỉnh là a,b,c,d,e
Theo bài ra :
a+b = b+c = c+d = d+e = e+a = -6
\(\Rightarrow\)a=b=c=d=e
Các số cần tìm là :
-6 : 2 = -3
Vậy các số cần tìm là -3
Ta có hình vẽ :
-3 -3 -3 -3 -3
Gọi d là UCLN của 3n + 1 và 4n + 1
=> 3n + 1 chia hết cho d => 12n +4 chia hết cho d
4n + 1 chia hết cho d => 12n+3 chia hết cho d
=> (12n + 4 ) - ( 12n +3 ) chia hết cho d
=> 1 chia hết cho d => d = 1
Vậy 3n + 1 và 4n + 1 là hai số nguyên tố cùng nhau.
A= 1+2+22+23+.......+298+299
A= (1+2)+(22+23)+.......+(298+299 )
A=3+22.(1+2)+...+298.(1+2)
A= 3+22.3+...+298.3
A=3.(22+...+298)
Vid 3 chia hết cho 3 nên A chia hết cho 3
Đơn giản như đang giỡn
HT
a)
p=(2,3,5,7 ...)
p^2=(4,9,25,49...)
p^2+44=(48,53,93..)
có 53 nguyên tố
ds: p=3
b).p=(6,7,8 ...)
2p+1=(13,15,17...)
4p+1=(25,29,33.....)
l25=5.5=> 4p+1 là hợp số
c)p+6=(02,03,05, ...)
p+8 =(04,05,07,....)
p+12=(08,09,11,...)
P+14=(10,11,13,...)
ds: 5,7,11,13
2.
(ab-ba)=97-79=18=2.9 loại
(ab-ba)=93-39= loại 39 ko nguyen tố
(ab-ba)=73-37=26=13.2 loại
(ab-ba)=71-17=54=9.6loại
a>=b
(ab-ba)=11-11=0
ds: ab=11
Bài 1:
a; 3a + 8b ⋮ 19
3.(3a + 8b) ⋮ 19
9a + 24b ⋮ 19
9a + 5b + 19 b ⋮ 19
9a + 5b ⋮ 19 (đpcm)
Bài 1
b; \(\overline{1a2b3}\) ⋮ 3
1 + a + 2 + b + 3 ⋮ 3
(1 + 2 + 3) + (a + b) ⋮ 3
6 + (a + b) ⋮ 3
a + b ⋮ 3
a - b = 3
a = b + 3
Thay a = b + 3 vào biểu thức a + b ⋮ 3 ta có:
b + 3 + b ⋮ 3
2b ⋮ 3
b = 0; 3; 6; 9
Lập bảng ta có:
b | 0 | 3 | 6 | 9 |
a = b + 3 | 3 | 6 | 9 | 12 (loại) |
Theo bảng trên ta có: (a; b) = (3; 0); (6; 3);(9; 6)
b: \(\left(p-1\right)\left(p+1\right)+3=p^2-1+3=p^2+2\)
TH1: p=3
\(p^2+2=3^2+2=9+2=11\)
=>Nhận
TH2: p=3k+1
\(p^2+2=\left(3k+1\right)^2+2=9k^2+6k+1+2\)
\(=9k^2+6k+3=3\left(3k^2+2k+1\right)⋮3\)
=>Loại
TH3: p=3k+2
\(p^2+2=\left(3k+2\right)^2+2=9k^2+12k+4+2\)
\(=9k^2+12k+6=3\left(3k^2+4k+2\right)⋮3\)
=>Loại
Vậy: p=3
a: 326 chia a dư 11
=>326-11 chia hết cho a và a>11
=>\(315⋮a\) và a>11(1)
467 chia a dư 17
=>467-17 chia hết cho a và a>17
=>\(450⋮a\) và a>17(2)
Từ (1),(2) suy ra \(a\inƯC\left(315;450\right)\) và a>17
=>\(a\inƯ\left(45\right)\)
mà a>17
nên a=45