Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) đề x3+x2-x +a chia hét cho (x-1)2 ?
x3+x2-x +a=x(x2-2x+1)+3(x2-2x+1)+4x-3+a đề sai nhé
b)A(2)=0=> 8-12+10+m=0 => m=6
c)2n2-n+2=2n(n+1)-3(n+1) +5 chia het cho n+1 khi n+1 là ước của 5
n+1=-1;1;-5;5
n=-2;0;-6;4
b: \(\Leftrightarrow2n^2+n-2n-1+3⋮2n+1\)
\(\Leftrightarrow2n+1\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{0;-1;1;-2\right\}\)
x^4 -x ^3 + 6x^2 - x + n x^2-x+5 x^2+1 - x^4-x^3+5x^2 x^2-x+n - x^2-x+n 0
ĐỂ x4 - x3 + 6x2 -x \(⋮x^2-x+5\)
\(\Rightarrow x-5=0\Rightarrow x=5\)
b , ta có : \(3x^3+10x^2-5⋮3x+1\)
\(\Rightarrow3x^3+x^2+9x^2+3x-3x-1-4⋮3x+1\)
\(\Rightarrow x\left(3x+1\right)+3x\left(3x+1\right)-\left(3x+1\right)-4⋮3x+1\)
mà : \(\left(3x+1\right)\left(4x-1\right)⋮3x+1\)
\(\Rightarrow4⋮3x+1\Rightarrow3x+1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
Nếu : 3x + 1 = 1 => x = 0 ( TM )
3x + 1 = -1 => x = -2/3 ( loại )
3x + 1 = 2 => x = 1/3 ( loại )
3x + 1 = -2 => x = -1 ( TM )
3x + 1 = 4 => x = 1 ( TM )
3x + 1 = -1 => x = -5/3 ( loại )
\(\Rightarrow x\in\left\{0;\pm1\right\}\)
Lời giải:
a)
\(2(x+3)-x^2-3x=0\)
\(\Leftrightarrow 2(x+3)-(x^2+3x)=0\)
\(\Leftrightarrow 2(x+3)-x(x+3)=0\Leftrightarrow (2-x)(x+3)=0\)
\(\Rightarrow \left[\begin{matrix} 2-x=0\\ x+3=0\end{matrix}\right.\Rightarrow\left[\begin{matrix} x=2\\ x=-3\end{matrix}\right.\)
b)
Theo định lý Bê-du về phép chia đa thức thì để đa thức đã cho chia hết cho $3x-1$ thì:
\(f(\frac{1}{3})=3.(\frac{1}{3})^3+2(\frac{1}{3})^2-7.\frac{1}{3}+a=0\)
\(\Leftrightarrow -2+a=0\Leftrightarrow a=2\)
c) Ta có:
\(2n^2+3n+3\vdots 2n-1\)
\(\Leftrightarrow 2n^2-n+4n+3\vdots 2n-1\)
\(\Leftrightarrow n(2n-1)+(4n-2)+5\vdots 2n-1\)
\(\Leftrightarrow n(2n-1)+2(2n-1)+5\vdots 2n-1\)
\(\Leftrightarrow 5\vdots 2n-1\Rightarrow 2n-1\in \text{Ư}(5)\)
\(\Rightarrow 2n-1\in\left\{\pm 1; \pm 5\right\}\Rightarrow n\in\left\{0; 1; 3; -2\right\}\)
Vậy.................
a: \(\Leftrightarrow3x^3+x^2+9x^2+3x-3x-1+a-4⋮3x+1\)
=>a-4=0
hay a=4
c: \(\Leftrightarrow2n^2-4n+5n-10+3⋮n-2\)
\(\Leftrightarrow n-2\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{3;1;5;-1\right\}\)
c) Cách 1:
x^4+3x^3-x^2+ax+b x^2+2x-3 x^2+x x^4+2x^3-3x^2 - x^3+2x^2+ax+b x^3+2x^2-3x - (a+3)x+b
Để \(P\left(x\right)⋮Q\left(x\right)\)
\(\Leftrightarrow\left(a+3\right)x+b=0\)
\(\Leftrightarrow\hept{\begin{cases}a+3=0\\b=0\end{cases}\Leftrightarrow}\hept{\begin{cases}a=-3\\b=0\end{cases}}\)
Vậy a=-3 và b=0 để \(P\left(x\right)⋮Q\left(x\right)\)
a)
2n^2-n+2 2n+1 n-1 2x^2+n - -2n+2 -2n-1 - 3
Để \(2n^2-n+2⋮2n+1\)
\(\Leftrightarrow3⋮2n+1\)
\(\Leftrightarrow2n+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Leftrightarrow n\in\left\{0;1;-2;-1\right\}\)
Vậy \(n\in\left\{0;1;-2;-1\right\}\)để \(2n^2-n+2⋮2n+1\)