Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: P(x) = 3y + 6 có nghiệm khi
3y + 6 = 0
3y = -6
y = -2
Vậy đa thức P(y) có nghiệm là y = -2.
b) Q(y) = y4 + 2
Ta có: y4 có giá trị lớn hơn hoặc bằng 0 với mọi y
Nên y4 + 2 có giá trị lớn hơn 0 với mọi y
Tức là Q(y) ≠ 0 với mọi y
Vậy Q(y) không có nghiệm.
+) P (y) = 3y+ 6 có nghiệm nếu : 3y+ 6= 0
=> 3y= 0- 6
=> 3y= -6
=> y= -2
Vậy đa thức P(y) có nghiệm: y= -2
+ ) Q( y)= y4 + 2 nếu có nghiệm thì: y4 +2= 0
=> y4= -2
=> Q( y) = y4 +2 k có nghiệm.
Bài 1 :
\(A=x^2-2xy^2+y^4=\left(x-y^2\right)^2=-\left(y^2-x\right)^2\)
Mà \(B=-\left(y^2-x\right)^2\)
Nên ta có : đpcm
Bài 2
Đặt \(\left(x+1\right)\left(x-2\right)\left(2x-1\right)=0\)
TH1 : x = -1
TH2 : x = 2
TH3 : x = 1/2
Bài 4 :
a, \(\left(2x+3\right)\left(5-x\right)=0\Leftrightarrow x=-\frac{3}{2};5\)
b, \(\left(x-\frac{1}{2}\right)\left(3x+1\right)\left(2-x\right)=0\Leftrightarrow x=\frac{1}{2};-\frac{1}{3};2\)
c, \(x^2+2x=0\Leftrightarrow x\left(x+2\right)=0\Leftrightarrow x=0;-2\)
d, \(x^2-x=0\Leftrightarrow x\left(x-1\right)=0\Leftrightarrow x=0;1\)
a,ta có \(G\left(y\right)=-\left(y+2\right)^2\)
có nghiệm là -2
b,ta có:
Câu a làm giống bạn kia đc rồi
b, Dễ thấy H(x) > 0 nên pt éo có nghiệm =((
Lục đục nãy giờ mới thấy :/
Bài 1:
a)2x-6
Ta có:2x-6=0
2x=6
=>x=3
Vậy x=3 là nghiệm của đa thức a)
b)(6-x)(4-2x)
Ta có:(6-x)(4-2x)=0
Th1:6-x=0 =>x=6
Th2:4-2x=0
2x=4 =>x=2
Vậy x=2 và 6 là nghiệm của đa thức b)
c)x2+x
Ta có:x2+x=0
x(x+1)=0
TH1:x=0
TH2:x+1=0 =>x=-1
Vậy x=0 và -1 là nghiệm của đa thức c)
d)x2-81
Ta có:x2-81=0
x2=81
=>x=+_ 9
Vậy x=+_ 9 là nghiệm của đa thức d)
e)(2-x)(x2+1)
Ta có:(2-x)(x2+1)=0
TH1:2-x=0 =>x=2
TH2:x2+1=0
x2=-1 (loại)
Vậy x=2 là nghiệm đa thức e)
Bài 2:
P(x)=-2-3x2
Ta có:
-3x2≤0 với mọi x
=>-2-3x2<-2 với mọi x
Vậy đa thức P(x) vô nghiệm
Q(y)=y2+\(\dfrac{1}{4}\)y4+\(\dfrac{1}{4}\)
Ta có:
y2≥0 với mọi y
y4≥0 với mọi y
=>\(\dfrac{1}{4}\)y4≥0 với mọi y
=>y2+\(\dfrac{1}{4}\)y4≥0 với mọi y
=>y2+\(\dfrac{1}{4}\)y4+\(\dfrac{1}{4}\)≥\(\dfrac{1}{4}\)>0 với mọi y
Vậy đa thức Q(y) vô nghiệm
a. Ta có: \(x^2\ge0\) với mọi \(x\in R\)
\(\Rightarrow x^2+1>0\)
Suy ra: \(P\left(x\right)=x^2+1\) không có nghiệm
b. Ta có: \(y^4\ge0\) với mọi \(y\in R\)
\(\Rightarrow2y^4\ge0\)
\(\Rightarrow2y^4+5>0\)
Suy ra \(Q\left(y\right)=2y^4+5\) không có nghiệm
a) Ta có:
\(x^2\ge0\) (1)
\(1>0\) (2)
Từ (1) và (2) \(\Rightarrow x^2+1>0\Rightarrow x^2+1\ne0\)
Vậy đa thức P(x) = x2 + 1 vô nghiệm
b) Ta có:
\(y^4\ge0\Rightarrow2y^4\ge0\) (1)
\(5>0\) (2)
Từ (1) và (2) \(\Rightarrow2y^4+5>0\Rightarrow2y^4+5\ne0\)
Vậy đa thức Q(y) = 2y4 + 5 vô nghiệm
a)P(x)=\(x^5-3x^2+7x^4-9x^3+x^2-\dfrac{1}{4}x\)
=\(x^5+7x^4-9x^3-2x^2-\dfrac{1}{4}x\)
Q(x)=\(5x^4-x^5+x^2-2x^3+3x^2-\dfrac{1}{4}\)
=\(-x^5+5x^4-2x^3+4x^2-\dfrac{1}{4}\)
b) P(x)=\(x^5+7x^4-9x^3-2x^2-\dfrac{1}{4}x\)
+ Q(x)=\(-x^5+5x^4-2x^3+4x^2-\dfrac{1}{4}\)
__________________________________
P(x)+Q(x)= \(12x^4-11x^3+2x^2-\dfrac{1}{4}x-\dfrac{1}{4}\)
P(x)=\(x^5+7x^4-9x^3-2x^2-\dfrac{1}{4}x\)
- Q(x)=\(-x^5+5x^4-2x^3+4x^2-\dfrac{1}{4}\)
_________________________________________
P(x)-Q(x)=\(2x^5+2x^4-7x^3-6x^2-\dfrac{1}{4}x-\dfrac{1}{4}\)
c)Thay x=0 vào đa thức P(x), ta có:
P(x)=\(0^5+7\cdot0^4-9\cdot0^3-2\cdot0^2-\dfrac{1}{4}\cdot0\)
=0+0-0-0-0
=0
Vậy x=0 là nghiệm của đa thức P(x).
Thay x=0 vào đa thức Q(x), ta có:
Q(x)=\(-0^5+5\cdot0^4-2\cdot0^3+4\cdot0^2-\dfrac{1}{4}\)
=0+0-0+0-\(\dfrac{1}{4}\)
=0-\(\dfrac{1}{4}\)
=\(\dfrac{-1}{4}\)
Vậy x=0 không phải là nghiệm của đa thức Q(x).
a) Sắp xếp theo lũy thừa giảm dần
P(x)=x5−3x2+7x4−9x3+x2−14xP(x)=x5−3x2+7x4−9x3+x2−14x
=x5+7x4−9x3−2x2−14x=x5+7x4−9x3−2x2−14x
Q(x)=5x4−x5+x2−2x3+3x2−14Q(x)=5x4−x5+x2−2x3+3x2−14
=−x5+5x4−2x3+4x2−14=−x5+5x4−2x3+4x2−14
b) P(x) + Q(x) = (x5+7x4−9x3−2x2−1
a) Có \(P\left(1\right)=2.1^2+2m.1+m^2=2+2m+m^2\)
\(Q\left(1\right)=\left(-1\right)^2+4\left(-1\right)+5=1-4+5=2\). Vì \(P\left(1\right)=Q\left(-1\right)\)
\(\Rightarrow2+2m+m^2=2\Leftrightarrow2m+m^2=2-2=0\Leftrightarrow m\left(2+m\right)=0\)
\(\Rightarrow m=0\) hoặc \(2+m=0\Leftrightarrow m=0-2=-2\)
b) Đặt \(Q\left(x\right)=x^2+4x+5=0\Leftrightarrow x^2+4x=0-5=-5\)
\(\Leftrightarrow x\left(x+4\right)=-5\). Từ đó bạn lập bảng ra sẽ thấy k có trường hợp thỏa mãn => Vô nghiệm
a)M(x)=x2+5x+4=0
x2+x+4x+4=0
(x2+x)+(4x+4)=0
x(x+1)+4(x+1)=0
(x+1)(x+4)=0
=>x+1=0 hoặc x+4=0
x=-1 hoặc x =-4
Vậy nghiệm của đa thức M(x) là x=-1;-4
b)ta có M(x)+4=x2+5x+4+4=x2+5x+8
=x2+\(\frac{5}{2}.x+\frac{5}{2}.x+\frac{25}{4}+\frac{7}{4}\)
=(x2+\(\frac{5}{2}.x\))+(\(\frac{5}{2}.x+\frac{25}{4}\))+\(\frac{7}{4}\)
=x(x+\(\frac{5}{2}\))+\(\frac{5}{2}\)(x+\(\frac{5}{2}\))+\(\frac{7}{4}\)
=(x+\(\frac{5}{2}\))(x+\(\frac{5}{2}\))+\(\frac{7}{4}\)
=(x+\(\frac{5}{2}\))2+\(\frac{7}{4}\)
=>M(x)+4=0 thì (x+\(\frac{5}{2}\))2+\(\frac{7}{4}\)=0
(x+\(\frac{5}{2}\))2=\(\frac{-7}{4}\)(vô lí )
Vậy M(x)+4 không có nghiệm
a) M (x) = 0 <=> x2 + 5x + 4 = 0
<=> (x2 + 4x) + (x + 4) = 0
<=> x.(x + 4) + (x + 4) = 0
<=> (x+ 4).(x + 1) = 0
<=> x + 4 = 0 hoặc x + 1 = 0
<=> x = - 4 hoặc x = -1
Vậy nghiệm của M (x) là -4; -1
b) M(x) + 4 = x2 + 5x + 4 + 4 = x2 + 5x + 8
= x2 + \(\frac{5}{2}\).x + \(\frac{5}{2}\).x + 8= (x2 + \(\frac{5}{2}\).x) +( \(\frac{5}{2}\).x + \(\frac{25}{4}\)) - \(\frac{25}{4}\) + 8
= x.(x + \(\frac{5}{2}\) ) + \(\frac{5}{2}\).(x + \(\frac{5}{2}\)) + \(\frac{7}{4}\) = (x + \(\frac{5}{2}\) ).(x + \(\frac{5}{2}\) ) + \(\frac{7}{4}\) = (x + \(\frac{5}{2}\) )2 + \(\frac{7}{4}\) \(\ge\) 0 + \(\frac{7}{4}\) > 0 với mọi x
Vậy M(x) + 4 không có nghiệm
bạn trả lời vs thầy là :
" bài này nhìn qua cx biết nó > 0 oy, nên vô nghiệm "
chỉ có những thằng thiểu năng mới hỏi câu kiểu này
a, \(x^2+1\)
Có \(x^2\ge0\forall x\)=>x^2+1 >0
vậy đa thức vô nghiệm
b,(2x+1)^2+3
có (2x+1)^2\(\ge\)0 với mọi x
=>(2x+1)^2+3>0
=>đa thức này không có nghiệm
a) Ta có: P(x) = 3y + 6 có nghiệm khi
3y + 6 = 0
3y = -6
y = -2
Vậy đa thức P(y) có nghiệm là y = -2.
b) Q(y) = y4 + 2
Ta có: y4 có giá trị lớn hơn hoặc bằng 0 với mọi y
Nên y4 + 2 có giá trị lớn hơn 0 với mọi y
Tức là Q(y) ≠ 0 với mọi y
Vậy Q(y) không có nghiệm.
a) Giả sử: P (y) = 0
=> 3y+6 = 0
=> 3y = -6
=> y =-2
Vậy y = -2 là một nghiệm của đa thức P (y)
b) Giả sử: Q (y) = 0
=> y4 + 2 = 0
=> y4 = -2
Vì y4 \(\ge\) 0 \(\forall\) y
nên y4 = -2 là vô lí
Vậy đa thức Q (y) = y4 + 2 không có nghiệm