\(\frac{\sqrt{x-3}}{2x}\), B=\(\frac...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1. Chứng minh rằng \(5^{8^{2006}}\) \(+\)\(5\) chia hết cho 62. Tìm nghiệm nguyên dương của phương trình \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)3.Cho biểu thức:P= \(\left(\frac{\sqrt{a}+1}{\sqrt{ab}+1}+\frac{\sqrt{ab}+\sqrt{a}}{\sqrt{ab-1}}-1\right):\left(\frac{\sqrt{a}+1}{\sqrt{ab}+1}-\frac{\sqrt{ab}+\sqrt{a}}{\sqrt{ab}-1}+1\right)\)a) Rút gọn Pb) Cho a+b =1. Tìm giá trị nhỏ nhất của P4. Cho a,b,c là các số thực dương thỏa mãn điều kiện...
Đọc tiếp

1. Chứng minh rằng \(5^{8^{2006}}\) \(+\)\(5\) chia hết cho 6

2. Tìm nghiệm nguyên dương của phương trình \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)

3.Cho biểu thức:

P= \(\left(\frac{\sqrt{a}+1}{\sqrt{ab}+1}+\frac{\sqrt{ab}+\sqrt{a}}{\sqrt{ab-1}}-1\right):\left(\frac{\sqrt{a}+1}{\sqrt{ab}+1}-\frac{\sqrt{ab}+\sqrt{a}}{\sqrt{ab}-1}+1\right)\)

a) Rút gọn P

b) Cho a+b =1. Tìm giá trị nhỏ nhất của P

4. Cho a,b,c là các số thực dương thỏa mãn điều kiện abc = 1.Tìm giá trị nhỏ nhất của biểu thức

P= \(\frac{bc}{a^2b+a^2c}+\frac{ca}{b^2c+b^2a}+\frac{ab}{c^2a+c^2b}\)

5. Tìm các số nguyên x,y thỏa mãn hằng đẳng thức:

\(2xy^2+x+y+1=x^2+2y^2+xy\)

6. Đa thức \(F\left(x\right)\)chia cho \(x+1\)dư 4, chia cho \(x^2+1\)dư \(2x+3\). Tìm đa thức dư khi \(F\left(x\right)\) chia cho \(\left(x+1\right)\left(x^2+1\right)\)

Giúp em ạ. Giải từng câu cũng được ạ. Mai em nộp bài rồi. 

1
9 tháng 2 2017

\(P=\frac{\frac{1}{a^2}}{\frac{1}{b}+\frac{1}{c}}+\frac{\frac{1}{b^2}}{\frac{1}{a}+\frac{1}{c}}+\frac{\frac{1}{c^2}}{\frac{1}{a}+\frac{1}{b}}\)

Đặt \(\hept{\begin{cases}x=\frac{1}{a}\\y=\frac{1}{b}\\z=\frac{1}{c}\end{cases}}\Rightarrow xyz=1\Rightarrow P=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\)

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có: 

\(P\ge\frac{\left(x+y+z\right)^2}{y+z+x+z+x+y}=\frac{x+y+z}{2}\ge\frac{3\sqrt[3]{xyz}}{2}=\frac{3}{2}\)

Dấu "=" xảy ra khi \(x=y=z\Leftrightarrow a=b=c=1\)

Cần cách khác thì nhắn cái

26 tháng 9 2017

a) \(\sqrt{2x-1}\)co nghia khi \(2x-1\ge0\)

                                           \(\Leftrightarrow2x\ge1\)        

                                           \(\Leftrightarrow x\ge\frac{1}{2}\)

vay \(\sqrt{2x-1}\) co nghia khi \(x\ge\frac{1}{2}\)

                                           \(\Leftrightarrow\hept{\begin{cases}\orbr{\begin{cases}3-2x\le0\\x+1< 0\end{cases}}\\\orbr{\begin{cases}3-2x\ge0\\x+1>\end{cases}}\end{cases}}\)

28 tháng 11 2019

b) Biểu thức \(\sqrt{\frac{3-2x}{x+1}}\)xác định khi và chỉ 

\(TH1:\hept{\begin{cases}3-2x\ge0\\x+1>0\end{cases}}\Rightarrow\hept{\begin{cases}x\le\frac{3}{2}\\x>-1\end{cases}}\Rightarrow-1< x\le\frac{3}{2}\)

\(TH2:\hept{\begin{cases}3-2x\le0\\x+1< 0\end{cases}}\Rightarrow\hept{\begin{cases}x\ge\frac{3}{2}\\x< -1\end{cases}}\left(L\right)\)

Vậy \(-1< x\le\frac{3}{2}\)

15 tháng 7 2020

a, de phuong trinh tren co nghia thi \(3x-9\ge0\)

\(3x\ge9< =>x\ge3\)

b, de phuong trinh tren co nghia thi \(5-10x\ge0\)

\(< =>10x\le5\)\(< =>x\le\frac{1}{2}\)

c, de phuong trinh tren co nghia thi \(\frac{3}{2x+1}\ge0\)(DK: x khac -1/2)

\(< =>2x+1\ge0\)\(< =>x>-\frac{1}{2}\)

d, de phuong trinh tren co nghia thi \(\frac{2x-4}{3}\ge0\)

\(< =>2x-4\ge0\)\(< =>x\ge2\)

e, de phuong trinh tren co nghia thi \(\frac{x^2}{2x-3}\)

do \(x^2\ge\)suy ra \(2x-3\ge0\)

\(< =>2x\ge3\)\(< =>x\ge\frac{3}{2}\)

 
 
 
 
10 tháng 8 2021

Bài 1 : Với : \(x>0;x\ne1\)

\(P=\left(1+\frac{1}{\sqrt{x}-1}\right)\frac{1}{x-\sqrt{x}}=\left(\frac{\sqrt{x}}{\sqrt{x}-1}\right).\sqrt{x}\left(\sqrt{x}-1\right)=x\)

Thay vào ta được : \(P=x=25\)

10 tháng 8 2021

Bài 2 : 

a, Với \(x\ge0;x\ne1\)

\(A=\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{2}{\sqrt{x}+1}-\frac{2}{x-1}=\frac{x+\sqrt{x}-2\sqrt{x}+2-2}{x-1}\)

\(=\frac{x-\sqrt{x}}{x-1}=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}}{\sqrt{x}+1}\)

Thay x = 9 vào A ta được : \(\frac{3}{3+1}=\frac{3}{4}\)

12 tháng 6 2019

A=?;B=?