Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3,
b, Có : abcd = 100ab + cd
= 100.2.cd + cd
= 200cd + cd
= ( 200 + 1 ). cd
= 201. cd
= 3.67 + cd
suy ra abcd chia hết cho 67.
a, Có : abc = abc0
abc0 = 1000a + bc0
= 999a + a + bc0
= 999a + bca
= 27.37a + bca
Có : abc chia hết cho 27 suy ra abc0 chia hết cho 27
suy ra 27. 37a + bca chia hết cho 27
suy ra bca chia hết cho 27.
a/ \(\frac{3n}{n-1}=\frac{3n-3+3}{n-1}=3+\frac{3}{n-1}\)
để 3n chia hết cho n-1 thì n-1 phải thuộc ước của 3
suy ra n-1 thuộc -3;-1;1;3
suy ra n thuộc -2;0;2;4
b/\(\frac{n+10}{n-1}=\frac{n-1+11}{n-1}=1+\frac{11}{n-1}\)
để n+10 là bội của n-1 thì 11 phải là bội của n-1
suy ra n-1 thuộc -11;-1;1;11
suy ra n thuộc -10;0;2;12
gặp dạng toán như vậy thì bạn cứ áp dụng cách này để làm nhé
c/ gọi ba số đó là n-1;n;n+1
ta thấy \(\left(n-1\right)+n+\left(n+1\right)=3n\)chia hết cho 3 với mọi n thuộc Z
vậy tổng 3 số liên tiếp luôn chia hết cho 3
nhớ k cho mình nhé ^.^
Ta có : 3n chia hết cho n - 1
<=> 3n - 3 + 3 chia hết cho n - 1
<=> 3(n - 1) + 3 chia hết cho n - 1
<=> 3 chia hết cho n - 1
<=> n - 1 thuộc Ư(3) = {-3;-1;1;3}
Ta có bảng:
n - 1 | -3 | -1 | 1 | 3 |
n | -2 | 0 | 2 | 4 |
a) \(A=1+2+3^2+....+3^{11}\)
\(=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{10}+3^{11}\right)\)
\(=\left(1+3\right)+3^2\left(1+3\right)+....+3^{10}\left(1+3\right)\)
\(=\left(1+3\right)\left(1+3^2+...+3^{10}\right)\)
\(=4\left(1+3^2+...+3^{10}\right)\)\(⋮\)\(4\)
b) \(B=16^5+2^{15}=\left(2^4\right)^5+2^{15}=2^{20}+2^{15}=2^{15}.\left(2^5+1\right)=2^{15}.33\)\(⋮\)\(33\)
c) \(C=10^{28}+8=1000...008\)(27 chữ số 0)
Nhận thấy: tổng các chữ số của C chia hết cho 9 => C chia hết cho 9
3 chữ số tận cùng của C chia hết cho 8 => C chia hết cho 8
mà (8;9) = 1 => C chia hết cho 72
d) \(D=8^8+2^{20}=2^{24}+2^{20}=2^{20}\left(2^4+1\right)=2^{20}.17\)\(⋮\)\(17\)
Bài 78 :
Số có tận cùng là 1 khi nâng lên lũy thừa vẫn có tận cùng là 1
Ta có : A có 10 số hạng
Vậy A = (...1) + (...1) + .... + (..1) = (...0)
A có chữ số tận cùng là 0 nên A chia hết cho 5
78/ \(A=11^9+11^8+11^7+...+11+1\)
\(\Rightarrow2A=11^{10}+11^9+11^8+11^7+...+11\)
\(\Rightarrow2A\text{-}A=\left(11^{10}+11^9+11^8+11^7+...+11\right)\text{-}\left(+11^9+11^8+11^7+...+11+1\right)\)
\(A=11^{10}\text{-}1\)
\(A=\left(...1\right)\text{-}1\Rightarrow A=\left(...0\right)\)tận cùng là 0 chia hết cho 5.
mình ghi lại đề nhé
Chứng tỏ rằng :
a, 1028 + 8 chia hết cho 72
b, 88 + 220 chia hết cho 17
c, 10n + 18n - 1 chia hết cho 27
d, 10n +72n - 1 chia hết cho 81
a) 1028 = (2.5)28 = 228.528 => 1028 chia hết cho 23 hay 1028 chia hết cho 8 => 1028 + 8 chia hết cho 8
Mà 1028 + 8 = 1000...08 có tổng các chữ số bằng 9 => 1028 + 8 chia hết cho 9
=> 1028 + 8 chia hết cho 8.9 = 72
b) 88 + 220 = (23)8 + 220 = 224 + 220 = 220.(24 + 1) = 220.17 chia hết cho 17 => 88 + 220 chia hết cho 17
c) 10n + 18n - 1 = (10n - 1) - 9n + 27n = 999...9 - 9n + 27n (Có n chữ số 9)
= 9.111...1 - 9n + 27n (Có n chữ số 1)
= 9.(111...1 - n) + 27n
Nhận xét: 111...1 có tổng các chữ số là 1+ 1 + 1+ ..+ 1 = n => 111...1 - n chia hết cho 3
=> 9.(111...1 - n) chia hết cho 9.3 = 27
Mà 27n chia hết cho 27
Nên 9.(111...1 - n) + 27n chia hết cho 27
Vậy....
d) 10n + 72n - 1 = (10n - 1) - 9n + 81n = 99...9 - 9n + 81n (Có n chữ số 9)
= 9.(11..1 - n) + 81n
Nhận xét: 111...1 có tổng các chữ số là n => 111...1 - n chia hết cho 9
=> 9.(11...1 - n) chia hết cho 9.9 = 81
Mà 81n chia hết cho 81
Nên 9.(11..1 - n) + 81n chia hết cho 81
Vậy...
a.Dấu hiệu chia hết cho 11: từ trái sang phải tổng của các chữ số có vị trí lẻ trừ tngr của cá chữ số có vị trí lẻ chia hết cho 11 thì số đó chia hết cho 11.
The đề bài ab+cd+eg chia hết cho 11
nên 10a+10c+10e+b+d+g chia hết cho 11
hay 11(a+c+e)-a-c-e+b+d+g chia hết cho 11
suy ra 11(a+c+e) - (a+c+e-b-d-g) chia hết cho 11
mà 11(a+c+e) chia hết cho 11 suy ra (a+c+e-b-d-g) chia hết cho 11
Vì vậy abcdeg chia hết cho 11
a.Dấu hiệu chia hết cho 11: từ trái sang phải tổng của các chữ số có vị trí lẻ trừ tngr của cá chữ số có vị trí lẻ chia hết
cho 11 thì số đó chia hết cho 11.
The đề bài ab+cd+eg chia hết cho 11
nên 10a+10c+10e+b+d+g chia hết cho 11
hay 11(a+c+e)-a-c-e+b+d+g chia hết cho 11
suy ra 11(a+c+e) - (a+c+e-b-d-g) chia hết cho 11
mà 11(a+c+e) chia hết cho 11 suy ra (a+c+e-b-d-g) chia hết cho 11
Vì vậy abcdeg chia hết cho 11