Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Chỉ tìm được Max thôi nhé
a) \(C=\frac{4}{5}+\frac{20}{\left|3x+5\right|+\left|4y+5\right|+8}\le\frac{4}{5}+\frac{20}{8}=\frac{33}{10}\left(\forall x,y\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left|3x+5\right|=0\\\left|4y+5\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{5}{3}\\y=-\frac{5}{4}\end{cases}}\)
b) \(E=\frac{2}{3}+\frac{21}{\left(x+3y\right)^2+5\left|x+5\right|+14}\le\frac{2}{3}+\frac{21}{14}=\frac{13}{6}\left(\forall x,y\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x+3y\right)^2=0\\5\left|x+5\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-5\\y=\frac{5}{3}\end{cases}}\)
2) Thì chỉ tìm được GTNN thôi nhé
a) \(A=5+\frac{-8}{4\left|5x+7\right|+24}\ge5-\frac{8}{24}=\frac{14}{3}\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(4\left|5x+7\right|=0\Rightarrow x=-\frac{7}{5}\)
Vậy Min(A) = 14/3 khi x = -7/5
b) \(B=\frac{6}{5}-\frac{14}{5\left|6y-8\right|+35}\ge\frac{6}{5}-\frac{14}{35}=\frac{4}{5}\left(\forall y\right)\)
Dấu "=" xảy ra khi: \(5\left|6y-8\right|=0\Rightarrow x=\frac{4}{3}\)
Vậy Min(B) = 4/5 khi x = 4/3
a) Vì : \(\left(x+1\right)^2\ge0\forall x\)
\(\left(y-\frac{1}{3}\right)^2\ge0\forall x\)
Nên : \(\left(x+1\right)^2+\left(y-\frac{1}{3}\right)^2\ge0\forall x\)
Suy ra : C = \(\left(x+1\right)^2+\left(y-\frac{1}{3}\right)^2-10\ge-10\forall x\)
Vậy Cmin = -10 khi x = -1 và y = \(\frac{1}{3}\)
b) VÌ \(\left(2x-1\right)^2\ge0\forall x\)nên \(D\le\frac{5}{3}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow2x-1=0\Leftrightarrow x=\frac{1}{2}\)
Vậy....
Bài 1
\(a,\left|x\right|=-\left|-\frac{5}{7}\right|=>x\in\varnothing\)
\(b,\left|x+4,3\right|-\left|-2,8\right|=0\)
\(=>\left|x+4,3\right|-2,8=0\)
\(=>\left|x+4,3\right|=0+2,8=2,8\)
\(=>x+4,3=\pm2,8\)
\(=>\hept{\begin{cases}x+4,3=2,8\\x+4,3=-2,8\end{cases}=>\hept{\begin{cases}x=-1,5\\x=-7,1\end{cases}}}\)
\(c,\left|x\right|+x=\frac{2}{3}\)
\(=>\hept{\begin{cases}x+x=\frac{2}{3}\\-x+x=\frac{2}{3}\end{cases}}=>\hept{\begin{cases}x=\frac{1}{3}\\x=-\frac{1}{3}\end{cases}}\)
a) ta có \(x^2\ge0\Leftrightarrow x^2+2\ge2.\)
\(\frac{1}{x^2+2}\le\frac{1}{2}\) vậy GTLN là \(\frac{1}{2}\)
b) ta có \(2x^2\ge0\Leftrightarrow2x^2+5\ge5\)
\(\frac{1}{2x^2+5}\le\frac{1}{5}\) vậy GTLN là \(\frac{1}{5}\)
c) ta có \(\left(x-1\right)^2\ge0\Leftrightarrow\left(x-1\right)^2+4\ge4\)
\(\frac{8}{\left(x-1\right)^2+4}\le\frac{8}{4}\) vậy GTLN là \(\frac{8}{4}=2\)
1. a) Ta có: M = |x + 15/19| \(\ge\)0 \(\forall\)x
Dấu "=" xảy ra <=> x + 15/19 = 0 <=> x = -15/19
Vậy MinM = 0 <=> x = -15/19
b) Ta có: N = |x - 4/7| - 1/2 \(\ge\)-1/2 \(\forall\)x
Dấu "=" xảy ra <=> x - 4/7 = 0 <=> x = 4/7
Vậy MinN = -1/2 <=> x = 4/7
2a) Ta có: P = -|5/3 - x| \(\le\)0 \(\forall\)x
Dấu "=" xảy ra <=> 5/3 - x = 0 <=> x = 5/3
Vậy MaxP = 0 <=> x = 5/3
b) Ta có: Q = 9 - |x - 1/10| \(\le\)9 \(\forall\)x
Dấu "=" xảy ra <=> x - 1/10 = 0 <=> x = 1/10
Vậy MaxQ = 9 <=> x = 1/10
\(A=\left(x+\frac{4}{7}\right)^{24}+\frac{-12}{293}\)
Ta có \(\left(x+\frac{4}{7}\right)^{24}\ge0\forall x\Rightarrow\left(x+\frac{4}{7}\right)^{24}+\frac{-12}{293}\ge\frac{-12}{293}\)
Đẳng thức xảy ra <=> x + 4/7 = 0 => x = -4/7
=> MinA = -12/293 <=> x = -4/7
\(B=-\left(x+\frac{1}{6}\right)^{26}-\left(x+y+\frac{3}{8}\right)^{422}+5,98\)
Ta có \(\hept{\begin{cases}-\left(x+\frac{1}{6}\right)^{26}\le0\forall x\\-\left(x+y+\frac{3}{8}\right)^{442}\le0\forall x,y\end{cases}}\Rightarrow-\left(x+\frac{1}{6}\right)^{26}-\left(x+y+\frac{3}{8}\right)+5,98\le5,98\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x+\frac{1}{6}=0\\x+y+\frac{3}{8}=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{1}{6}\\y=-\frac{5}{24}\end{cases}}\)
=> MaxB = 5, 98 <=> x = -1/6 ; y = -5/24