Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chi biet phan 5 thoi @
Vi 3a=5b=12suy ra a=4 ;b=2,4 ta co p=a.b suy ra p=4×2.4=9.6 suy ra p>[=9.6 gtln=9.6
a) A = x( 5 - 3x ) = -3x2 + 5x = -3( x2 - 5/3x + 25/36 ) + 25/12
= -3( x - 5/6 )2 + 25/12 ≤ +25/12 ∀ x
Dấu "=" xảy ra khi x = 5/6
Vậy MaxA = 25/12 <=> x = 5/6
b) Từ x + y = 7 => x = 7 - y
Ta có : xy = ( 7 - y ).y = 7y - y2 = -( y2 - 7y + 49/4 ) + 49/4 = -( y - 7/2 )2 + 49/4 ≤ 49/4 ∀ y
Dấu "=" xảy ra <=> y = 7/2 => x = 7/2
Vậy Max(xy) = 49/4 <=> x = y = 7/2
( nếu cho x,y dương thì Cauchy nhanh gọn luôn :)) )
câu a) rút x theo y thế vào A rồi áp dụng HĐT
b)rút xy thế vào B
c)HĐT
d)rút x theo y thé vào C
rồi dùng BĐT cô-si
e)BĐT chưa dấu giá trị tuyệt đối
x^2+y^2=xy => xy >= 0
x^2 + y^2 = xy <=> (x-y)^2 = -xy => -xy >= 0 <=> xy <= 0
=> xy = 0 => x^2+y^2 = 0 <=> x=y=0
F luôn bằng 0 => Max = min = 0
a, \(f\left(x\right)=\sqrt{x}\left(1-\sqrt{x}\right)=-\left(x-\sqrt{x}+\dfrac{1}{4}\right)+\dfrac{1}{4}\)
\(=-\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)
khi x=1/4
b,\(g\left(x\right)=\dfrac{1}{x^2-2\sqrt{2}x+5}=\dfrac{1}{\left(x-\sqrt{2}\right)^2+3}\le\dfrac{1}{3}\)
khi x=căn 2
c,\(x-4\sqrt{x-3}=x-3-4\sqrt{x-3}+4-1\)
\(=\left(\sqrt{x-3}-2\right)^2-1\ge-1\)
dấu = khi x=7
d, g(x)=\(x-2\sqrt{xy}+3y-2\sqrt{x}+\dfrac{4009}{2}\)
3g(x)=\(x-6\sqrt{xy}+9y+2x-6\sqrt{x}+\dfrac{9}{2}+6009\)
3g(x)=\(\left(\sqrt{x}-3\sqrt{y}\right)^2+2\left(\sqrt{x}-\dfrac{3}{2}\right)^2+6009\)
3g(x)>= 6009
g(x)>=2003
khi x=9y=9/4