\(\left(2017^{2018}-2017^{2017}\right):2017^{2016}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a. Ta có :

\(\frac{\left(2017^{2018}-2017^{2017}\right)}{2017^{2016}}=\frac{2017^{2017}\cdot\left(2017-1\right)}{2017^{2016}}=2017\cdot2016\)

VẬY A CÓ CHỮ SỐ TẦN CỤNG LÀ 2

b. Đề có sai không bạn ví dụ 909 có 2 chữ số giống nhau và là số tự nhiên nhưng đâu chia hết cho 37 đâu 

11 tháng 10 2018

Ko chứng tỏ đc thì chứng tỏ nó sai ! Bạn biết làm cách đấy ko ?

18 tháng 10 2016

a) bn tự lm

b) n + 2 chia hết cho n2 + 1

=> n.(n + 2) chia hết cho n2 + 1

=> n2 + 2n chia hết cho n2 + 1

=> n2 + 1 + 2n - 1 chia hết cho n2 + 1

Do n2 + 1 chia hết cho n2 + 1 => 2n - 1 chia hết cho n2 + 1 (1)

Lại có: n + 2 chia hết cho n2 + 1 (theo đề bài)

=> 2.(n + 2) chia hết cho n2 + 1

=> 2n + 4 chia hết cho n2 + 1 (2)

Từ (1) và (2) => (2n + 4) - (2n - 1) chia hết cho n2 + 1

=> 2n + 4 - 2n + 1 chia hết cho n2 + 1

=> 5 chia hết cho n2 + 1

Mà \(n\in N\) nên \(n^2+1\ge1\)

\(\Rightarrow n^2+1\in\left\{1;5\right\}\)

\(\Rightarrow n^2\in\left\{0;4\right\}\)

\(\Rightarrow n\in\left\{0;2\right\}\)

Thử lại ta thấy trường hợp n = 2 không thỏa mãn

Vậy n = 0

c) bn tự lm

18 tháng 10 2016

đon giản wá

10 tháng 11 2017

a,Vì 2001 chia 4 dư 1 nên 20012014 chia 4 dư 1

Đặt 20012014=4k+1

Ta có:20024k+1=(20024)ik.2002=(...............6)k.2002=.......................6.2002=.................................2 

Vậy \(2002^{2001^{2014}}\) có tận cùng là 2

b,Cậu b tương tự câu a

Vì 81 chia 4 dư 1 nên \(81^{82^{83}}\) chia 4 dư 1

Đặt \(81^{82^{83}}\)=4k+1

.....................Bạn tự làm tiếp đi(tận cùng bằng 2)

c,Vì 2017 chia 4 dư 1 nên \(2017^{2018^{2019}}\) chia 4 dư 1

Đặt \(2017^{2018^{2019}}=4k+1\)

Ta có:20174k+1=(20174)k.2017=(............1)k.2017=...................1.2017=.........................7

Vậy....................

10 tháng 11 2017

tui ko bt

22 tháng 12 2019

giả sử 2015^2016+2016^2017+2017^2018+2018^2019 là số chính phương

mà 2015^2016+2016^2017+2017^2018+2018^2019 là số chẵn=>2015^2016+2016^2017+2017^2018+2018^2019chia hết cho 4

ta có 2015^2016 ≡ (-1)^2016 (mod 4);   2016^2017 chia hết cho 4;   2017^2018 ≡ 1^2018 (mod 4);   2018^2019 ≡ 2^2019

=>2015^2016+2016^2017+2017^2018+2018^2019 ≡ (-1)^2016+1^2018+2^2019 (mod 4)

<=>2015^2016+2016^2017+2017^2018+2018^2019 ≡ 1+1+2^2019(mod 4)

ta có 2^2019=4x2^2017 chia hết cho 4

=>2015^2016+2016^2017+2017^2018+2018^2019 ≡ 2 (mod 4) vô lí 

=> điều giả sử sai

=>ĐPCM

5 tháng 7 2017

\(2016^{2017}=2016\cdot2016\cdot2016\cdot....\cdot2016\)

\(=...6\cdot...6\cdot...6\cdot.....\cdot6=.......6\)

6 mũ bao nhiêu luôn có tận cùng bằng 6 nên...

6 tháng 7 2017

sai bét, tìm 2 cs tận cùng cơ

29 tháng 7 2018

a, 0 ; 1 ; 5 ; 0

b, 4 ; 3 ; 6

c, 9 ; 1 ; 6 

ok

29 tháng 7 2018

k mk đi 

ai k mk 

mk k lại

thanks