\(-\frac{3}{4}xy^2+\frac{1}{2}x^3yz+\frac{3}{4}xy^2-5x^3yz-8+\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2019

a) dễ mà

\(A=-\frac{3}{4}xy^2+\frac{1}{2}x^3yz+\frac{3}{4}xy^2-5x^3yz-8+5x^3yz\)

\(\Leftrightarrow A=-2x^3yzx^3yz-8\)

Vậy bậc của đa thức là 10

b)  dễ  thay số vào đa thức đã thu gọn

3 tháng 3 2019

a) 

\(A=-\frac{3}{4}xy^2+\frac{1}{2}x^3yz+\frac{3}{4}xy^2-5x^3tz-8+\frac{5}{2}x^3yz\)

\(A=\left(-\frac{3}{4}xy^2+\frac{3}{4}xy^2\right)+\left(\frac{1}{2}x^3yz-5x^3yz+\frac{5}{2}x^3yz\right)-8\)

\(A=0+\left(-2\right)x^3yz-8\)

\(A=-2x^3yz-8\)

+) Bậc của đa thức trên là 4

b) Thay x = -1 ; y = 2 ; z = 3 vào đa thức trên ta có :

\(A=-2.\left(-1\right)^3.2.3-8\)

\(A=4\)

Vậy giá trị của đa thức A tại x = -1 ; y = 2 ; z = 3 là 4.

2 tháng 2 2018

BÀI 2:

a)   Tại   x = 2;   y = -3   thì

                \(2.2^2-3. \left(-3\right)\)\(=8+9\)\(=17\)

b)   Tại  x = 2;  y = -3   thì

              \(\frac{1}{9}.2^3.\left(-3\right)^2-4.2\)\(=8-8\)\(=0\)

Bài 1: Thu gọn a) \(\frac{1}{5}x^4y^3-3x^4y^3\) b) \(5x^2y^5-\frac{1}{4}x^2y^5\) c) \(\frac{1}{7}x^2y^3.\left(-\frac{14}{3}xy^2\right)-\frac{1}{2}xy.\left(x^2y^{\text{4}}\right)\) d) \(\left(3xy\right)^2.\left(-\frac{1}{2}x^3y^2\right)\) e) \(-\frac{1}{4}xy^2+\frac{2}{5}x^2y+\frac{1}{2}xy^2-x^2y\) f) \(\frac{1}{2}x^4y.\left(-\frac{2}{3}x^3y^2\right)-\frac{1}{3}x^7y^3\) g) \(\frac{1}{2}x^2y.\left(-10x^3yz^2\right).\frac{1}{4}x^5y^3z\) h)...
Đọc tiếp

Bài 1: Thu gọn

a) \(\frac{1}{5}x^4y^3-3x^4y^3\)

b) \(5x^2y^5-\frac{1}{4}x^2y^5\)

c) \(\frac{1}{7}x^2y^3.\left(-\frac{14}{3}xy^2\right)-\frac{1}{2}xy.\left(x^2y^{\text{4}}\right)\)

d) \(\left(3xy\right)^2.\left(-\frac{1}{2}x^3y^2\right)\)

e) \(-\frac{1}{4}xy^2+\frac{2}{5}x^2y+\frac{1}{2}xy^2-x^2y\)

f) \(\frac{1}{2}x^4y.\left(-\frac{2}{3}x^3y^2\right)-\frac{1}{3}x^7y^3\)

g) \(\frac{1}{2}x^2y.\left(-10x^3yz^2\right).\frac{1}{4}x^5y^3z\)

h) \(4.\left(-\frac{1}{2}x\right)^2-\frac{3}{2}x.\left(-x\right)+\frac{1}{3}x^2\)

i) \(1\frac{2}{3}x^3y.\left(\frac{-1}{2}xy^2\right)^2-\frac{5}{4}.\frac{8}{15}x^3y.\left(-\frac{1}{2}xy^2\right)^2\)

k) \(-\frac{3}{2}xy^2.\left(\frac{3}{4}x^2y\right)^2-\frac{3}{5}xy.\left(-\frac{1}{3}x^4y^3\right)+\left(-x^2y\right)^2.\left(xy\right)^2\)

n) \(-2\frac{1}{5}xy.\left(-5x\right)^2+\frac{3}{4}y.\frac{2}{3}\left(-x^3\right)-\frac{1}{9}.\left(-x\right)^3.\frac{1}{3}y\)

m) \(\left(-\frac{1}{3}xy^2\right)^2.\left(3x^2y\right)^3.\left(-\frac{5}{2}xy^2z^3\right)^{^2}\)

p) \(-2y.\left|2\right|x^4y^5.\left|-\frac{3}{4}\right|x^3y^2z\)

1
26 tháng 7 2019

Bài 1:

a) \(\frac{1}{5}x^4y^3-3x^4y^3\)

= \(\left(\frac{1}{5}-3\right)x^4y^3\)

= \(-\frac{14}{5}x^4y^3.\)

b) \(5x^2y^5-\frac{1}{4}x^2y^5\)

= \(\left(5-\frac{1}{4}\right)x^2y^5\)

= \(\frac{19}{4}x^2y^5.\)

Mình chỉ làm 2 câu thôi nhé, bạn đăng nhiều quá.

Chúc bạn học tốt!

29 tháng 7 2019

cảm ơn nha

chúc bạn học tốt

18 tháng 6 2020

Bài làm:

a) \(P=x^4y^5+x^3+3+x^4y^5-y^2-xy^4+1\)

\(P=2x^4y^5-xy^4+x^3-y^2+4\)

Bậc của đa thức P là 9

b) Ta có:

\(N\left(-1\right)=2.\left(-1\right)+7+\left(-1\right)^3-2.\left(-1\right)^2+\left(-1\right)+\frac{1}{2}\)

\(N\left(-1\right)=-2+7-1-2-1+\frac{1}{2}\)

\(N\left(-1\right)=\frac{3}{2}\)

\(N\left(2\right)=2.2+7+2^3-2.2^2+2+\frac{1}{2}\)

\(N\left(2\right)=4+7+8-8+2+\frac{1}{2}\)

\(N\left(2\right)=\frac{27}{2}\)

c) Tại \(x=-\frac{1}{2};y=2\)thì giá trị của biểu thức P là:

\(P=2.\left(-\frac{1}{2}\right)^4.2^5-\left(-\frac{1}{2}\right).2^4+\left(-\frac{1}{2}\right)^3-2^2+4\)

\(P=4+8-\frac{1}{8}-4+4\)

\(P=\frac{95}{8}\)

Học tốt!!!!

a, Ta có :

 \(P=x^4y^5+x^3+3+x^4y^5-y^2-xy^4+1\)

\(=2x^4y^5+x^3+4-y^2-xy^4\)

Bậc : 9 

b,TH1 :  \(N\left(-1\right)=2\left(-1\right)+7+\left(-1\right)^3-2\left(-1\right)^2+\left(-1\right)+\frac{1}{2}\)

\(=-2+7-1-2-1+\frac{1}{2}=\frac{3}{2}\)

TH2 : tương tự 

c, Thay vào tính thôi.

m: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{2}=\dfrac{y}{\dfrac{5}{2}}=\dfrac{z}{\dfrac{7}{4}}=\dfrac{3x+5y+7z}{3\cdot2+5\cdot\dfrac{5}{2}+7\cdot\dfrac{7}{4}}=\dfrac{123}{\dfrac{123}{4}}=4\)

Do đó: x=8; y=10; z=7

n: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)

Do đó: x=18; y=16; z=15

16 tháng 4 2020

a) \(\frac{3}{4}x^5y^7\cdot\frac{-1}{2}xy^6\cdot\frac{-11}{9}x^2y^5\)

 \(=\left(\frac{3}{4}\cdot\frac{-1}{2}\cdot\frac{-11}{9}\right)\cdot\left(x^5y^7\right)\cdot\left(xy^6\right)\cdot\left(x^2y^5\right)\)

\(=\frac{11}{24}\cdot\left(x^5xx^2\right)\cdot\left(y^7y^6y^5\right)\)

\(=\frac{11}{24}x^8y^{18}\)

Bậc của đơn thức trên : 8 + 18 = 26

b) Thay x = 1 và y = -1 vào đơn thức ta được

\(\frac{11}{24}\cdot1^8\cdot\left(-1\right)^{18}=\frac{11}{24}\cdot1\cdot1=\frac{11}{24}\)