Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\sqrt{45}:\sqrt{80}\)
\(=\sqrt{\frac{45}{80}}=\sqrt{\frac{9}{20}}\)
\(=\frac{3}{2\sqrt{5}}\)
b) Ta có: \(\sqrt{\frac{3}{15}}:\sqrt{\frac{36}{45}}\)
\(=\sqrt{\frac{1}{5}:\frac{4}{5}}\)
\(=\sqrt{\frac{1}{5}\cdot\frac{5}{4}}\)
\(=\sqrt{\frac{1}{4}}=\frac{1}{2}\)
c) Ta có: \(\sqrt{\frac{72}{9}}:\sqrt{8}\)
\(=\frac{\sqrt{8}}{\sqrt{8}}=1\)
d) Ta có: \(\sqrt{\frac{288}{169}}:\sqrt{\frac{8}{225}}\)
\(=\sqrt{\frac{288}{169}:\frac{8}{225}}\)
\(=\sqrt{\frac{288}{169}\cdot\frac{225}{8}}\)
\(=\sqrt{\frac{8100}{169}}=\frac{90}{13}\)
\(\sqrt{2-2.\frac{1}{2}\sqrt{2}+\frac{1}{4}}.\sqrt{8-2.2\sqrt{2}.\frac{1}{4}+\frac{1}{16}}=\sqrt{\left(\sqrt{2}-\frac{1}{2}\right)^2}\sqrt{\left(2\sqrt{2}-\frac{1}{4}\right)^2}\)
\(=\left(\sqrt{2}-\frac{1}{2}\right)\left(2\sqrt{2}-\frac{1}{4}\right)=\frac{33-10\sqrt{2}}{8}\)
\(\sqrt{2+2\sqrt{2}+1}.4\sqrt{\frac{288+2\sqrt{288}+1}{16}}=\sqrt{\left(\sqrt{2}+1\right)^2}.4\sqrt{\frac{\left(12\sqrt{2}+1\right)^2}{4^2}}\)
\(=\left(\sqrt{2}+1\right)\left(12\sqrt{2}+1\right)=25+13\sqrt{2}\)
\(\sqrt{28-10\sqrt{3}}=\sqrt{25-2.5\sqrt{3}+3}=\sqrt{\left(5-\sqrt{3}\right)^2}=5-\sqrt{3}\)
\(\sqrt{\frac{9-4\sqrt{2}}{4}}=\frac{\sqrt{\left(2\sqrt{2}-1\right)^2}}{2}=\frac{2\sqrt{2}-1}{2}\)
\(\sqrt{\frac{129+16\sqrt{2}}{16}}=\sqrt{\frac{\left(8\sqrt{2}+1\right)^2}{16}}=\frac{8\sqrt{2}+1}{4}\)
\(\sqrt{3+2\sqrt{2}}=\sqrt{\left(\sqrt{2}+1\right)^2}=\sqrt{2}+1\)
\(\sqrt{\frac{289+4\sqrt{72}}{16}}=\frac{\sqrt{\left(12\sqrt{2}+1\right)^2}}{4}=\frac{12\sqrt{2}+1}{4}\)
\(\sqrt{8+2\sqrt{15}}=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}=\sqrt{5}+\sqrt{3}\)
a, \(=7\sqrt{2}-6\sqrt{2}+\frac{1}{2}.2\sqrt{2}=\sqrt{2}+\sqrt{2}=2\sqrt{2}\)
b, \(=4\sqrt{a}+4\sqrt{10a}-9\sqrt{10a}=4\sqrt{a}-5\sqrt{10a}\)
c, \(=6+\sqrt{15}-\sqrt{60}=6+\sqrt{15}-2\sqrt{15}=6-\sqrt{15}\)
Rút gọn
a) Ta có: \(\sqrt{98}-\sqrt{72}+\frac{1}{2}\sqrt{8}\)
\(=\sqrt{2}\left(\sqrt{49}-\sqrt{36}+\frac{1}{2}\sqrt{4}\right)\)
\(=\sqrt{2}\left(7-6+\frac{1}{2}\cdot2\right)\)
\(=\sqrt{2}\left(1+1\right)=2\sqrt{2}\)
b) Ta có: \(\sqrt{16a}+2\sqrt{40a}-3\sqrt{90a}\)
\(=\sqrt{a}\left(\sqrt{16}+2\sqrt{40}-3\sqrt{90}\right)\)
\(=\sqrt{a}\left(4+4\sqrt{10}-9\sqrt{10}\right)\)
\(=\sqrt{a}\left(4-5\sqrt{10}\right)\)
\(=4\sqrt{a}-5\sqrt{10a}\)
c) Ta có: \(\left(2\sqrt{3}+\sqrt{5}\right)\cdot\sqrt{3}-\sqrt{60}\)
\(=6+\sqrt{15}-\sqrt{60}\)
\(=6-\sqrt{15}\)
\(a,\sqrt{\frac{72}{9}}:\sqrt{8}=\frac{\sqrt{72}}{\sqrt{9}}.\frac{1}{\sqrt{8}}\)
\(=\frac{6\sqrt{2}}{3}.\frac{1}{2\sqrt{2}}\)
\(=1\)
\(b,\left(7\sqrt{48}+3\sqrt{27}-2\sqrt{12}\right):\sqrt{3}=\left(28\sqrt{3}+9\sqrt{3}-4\sqrt{3}\right):\sqrt{3}\)
\(=33\sqrt{3}:\sqrt{3}\)
\(=33\)
\(c,\left(\sqrt{125}+\sqrt{245}-\sqrt{5}\right):\sqrt{5}=\left(5\sqrt{5}+7\sqrt{5}-\sqrt{5}\right):\sqrt{5}\)
\(=11\sqrt{5}:\sqrt{5}\)
\(=11\)
\(d,\left(\sqrt{\frac{1}{7}}-\sqrt{\frac{16}{7}}+\sqrt{7}\right):\sqrt{7}=\left(\frac{1}{\sqrt{7}}-\frac{4}{\sqrt{7}}+\frac{7}{\sqrt{7}}\right):\sqrt{7}\)
\(=\frac{4}{\sqrt{7}}.\frac{1}{\sqrt{7}}=\frac{4}{7}\)
a) \(\frac{\sqrt{2}}{2}\)
b)\(\frac{4}{9}\)
c)\(\frac{5}{3}\)
d)\(\frac{1}{12}\)
f) \(\frac{4}{15}\)
g) \(\frac{27}{100}\)
h) 2
i) -17
\(=\sqrt{8}:\sqrt{8}=1\)
\(\sqrt{\frac{72}{9}}:\sqrt{8}\)
\(=\sqrt{8}:\sqrt{8}\)
\(=1\)