\(\sqrt{\dfrac{1}{3-2x}}\)

Đề bài với giá trị nào của x thì mỗi căn thức sau có...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2021

Để \(\sqrt{\dfrac{1}{3-2x}}\) có nghĩa

Khi\(\dfrac{1}{3-2x}\ge0\)

\(\Leftrightarrow3-2x>0\)

\(\Leftrightarrow-2x< -3\)

\(\Leftrightarrow x>\dfrac{3}{2}\)

22 tháng 8 2021

undefined

22 tháng 8 2021

Để căn thức có nghĩa thì:

\(\sqrt{\dfrac{1}{-1+x}}>0\) và \(-1+x\ne0\)

\(\Leftrightarrow x>1\)

22 tháng 8 2021

\(ĐKXĐ\left\{{}\begin{matrix}\dfrac{1}{-1+x}\ge0\\-1+x\ne0\end{matrix}\right.\)   ( Tử và mẫu cùng dấu )

   Mà 1 > 0 \(\Rightarrow-1+x>0\)

                  \(\Leftrightarrow\)          \(x>1\)

 

 

22 tháng 8 2021

Vì `2>0` và `x^{2}>0` ( Với `x\ne0` )

`->(2)/(x^{2})>0`

Vậy với mọi giá trị của `x` thì căn thức đều có nghĩa ( `x\ne0` )

ĐKXĐ: \(x\ne0\)

22 tháng 8 2021

Để \(\sqrt{\dfrac{2+x}{5-x}}\) có nghĩa

<=> \(\dfrac{2+x}{5-x}\ge0\)

<=> (2+x)(5-x) \(\ge0\) và 5-x\(\ne\)

<=> \(\left[{}\begin{matrix}x\le-2\\x\ge5\end{matrix}\right.\) và x\(\ne\)5

<=> \(\left[{}\begin{matrix}x\le-2\\x>5\end{matrix}\right.\)

cái này bạn để ý có 2 mốc là -2 và 5, trái dấu thì trong khoảng, cùng dấu thì ngoài khoảng

ĐKXĐ: \(-2\le x< 5\)

22 tháng 8 2021

` ĐK:(-5)/(x^{2}+6)>=0`

Vì `-5<0` và `x^{2}+6>0`

`->(-5)/(x^{2}+6)<0`

Vậy căn thức trên không tồn tại, không có giá trị của `x` thỏa mãn

ĐKXĐ: \(x\in\varnothing\)

r: ĐKXĐ: \(x\ge-2\)

Căn thức có nghĩa \(\Leftrightarrow x^2-3\ge0\Rightarrow\sqrt{3}\le x\le-\sqrt{3}\)

\(\Leftrightarrow x^2-2x-3\ge0\)

\(\Leftrightarrow x\left(x+2\right)\ge0\)

\(\Leftrightarrow x^2+5x+6\ge0\)

3 tháng 7 2017

Bạn tìm điều kiện để cái trong căn lớn hơn bằng 0 la ok luôn mà

15 tháng 8 2016

Bài 1:
a) Để A,B có nghĩa \(\Leftrightarrow\begin{cases}2x+3\ge0\\x-3>0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge-\frac{3}{2}\\x>3\end{cases}\)\(\Leftrightarrow x>3\)

b) Để A= B

\(\Leftrightarrow\sqrt{\frac{2x+3}{x-3}}=\frac{\sqrt{2x+3}}{\sqrt{x-3}}\)

\(\Leftrightarrow\sqrt{\frac{2x+3}{x-3}}-\sqrt{\frac{2x+3}{x-3}}=0\)

\(\Leftrightarrow0x=0\) (thỏa mãn với mọi x>3)

Vậy x>3 thì A=B

 

 

 

15 tháng 8 2016

a, ĐKXĐ A: \(\frac{2x+3}{x-3}\)\(\frac{2x+3}{x-3}\ge0\Rightarrow\left[\begin{array}{nghiempt}\hept{\begin{cases}2x+3\ge0\\x-3>0\end{array}\right.\\\hept{\begin{cases}2x-3\le0\\x-3< 0\end{array}\right.\end{cases}\Rightarrow\left[\begin{array}{nghiempt}\hept{\begin{cases}x\ge-\frac{3}{2}\\x>3\end{array}\right.\\\hept{\begin{cases}x\le-\frac{3}{2}\\x< 3\end{array}\right.\end{cases}\Rightarrow}\left[\begin{array}{nghiempt}x>-\frac{3}{2}\\x< 3\end{array}\right.}\)

ĐKXĐ B: \(\begin{cases}2x+3\ge0\\x-3>0\end{cases}\Rightarrow\begin{cases}x\ge-\frac{3}{3}\\x>3\end{cases}}\)