\(\sqrt{9\cdot\sqrt{17}}\cdot\sqrt{9+\sqrt{17}}\)

b,\(\sqrt...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2016

a) \(\sqrt{9-\sqrt{17}}.\sqrt{9+\sqrt{17}}=\sqrt{81-17}=\sqrt{64}=8\)

b)\(\sqrt{9\left(3-a\right)^2}=3\left|3-a\right|=3\left(a-3\right)\)(vì a > 3)

\(\sqrt{9-\sqrt{17}}.\sqrt{9+\sqrt{17}}\)

\(=\sqrt{\left(\sqrt{9}\right)^2}-\sqrt{\left(\sqrt{17}\right)^2}\)

\(\sqrt{9\left(3-a\right)^2}\)

\(=\sqrt{3^2\left(3-a\right)^2}\)

\(=3\left(3-a\right)\)

\(=3-3a\)

16 tháng 9 2019

Không hiểu sao cứ gửi ảnh nó lại bị lộn xộn nên bạn cố nhìn nhé

( ͡°( ͡° ͜ʖ( ͡° ͜ʖ ͡°)ʖ ͡°) ͡°)

Bài 1: 

a: \(=\sqrt{32.4}=\dfrac{9}{5}\sqrt{10}\)

b: \(=\sqrt{5\cdot5\cdot7\cdot7\cdot11\cdot11}=5\cdot7\cdot11=385\)

c: \(=5-2\sqrt{6}\)

d: \(=18-1=17\)

e: \(=3\sqrt{2}-2\sqrt{3}+7\sqrt{3}-7\sqrt{2}=-4\sqrt{2}+5\sqrt{3}\)

a: \(=2\sqrt{6}-4\sqrt{2}+9+4\sqrt{2}-2\sqrt{6}=9\)

b: \(=\sqrt{81-17}=8\)

22 tháng 6 2018

\(\left(2+\sqrt{3}\right)\left(\sqrt{7-4\sqrt{3}}\right)=\left(2+\sqrt{3}\right)\sqrt{4-4\sqrt{3}+3}\)

\(=\left(2+\sqrt{3}\right).\sqrt{\left(2-\sqrt{3}\right)^2}\)

\(=\left(2+\sqrt{3}\right)\left|2-\sqrt{3}\right|\)

\(=\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)\)( Vì \(2-\sqrt{3}>0\))

\(=4-2=1\)

mk

11 tháng 8 2018

\(a.\sqrt{\left(1-\sqrt{5}\right)^2}+1=\left|1-\sqrt{5}\right|+1=\sqrt{5}-1+1=\sqrt{5}\)

\(b.\sqrt{3+2\sqrt{2}}-2=\sqrt{\left(\sqrt{2}+1\right)^2}-2=\sqrt{2}+1-2=\sqrt{2}-1\)

\(c.\sqrt{b^2-b+\dfrac{1}{4}}-\left(2b-\dfrac{1}{2}\right)=\sqrt{\left(b-\dfrac{1}{2}\right)^2}-2b+\dfrac{1}{2}=b-\dfrac{1}{2}-2b+\dfrac{1}{2}=-2b\)

\(d.\sqrt{7+2\sqrt{10}}=\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}=\sqrt{5}+\sqrt{2}\)

\(e.\sqrt{11-4\sqrt{7}}=\sqrt{\left(\sqrt{7}-2\right)^2}=\sqrt{7}-2\)

\(g.3x+\sqrt{x^2-2x+1}=3x+\sqrt{\left(x-1\right)^2}\)

* \(x\ge1\Rightarrow3x+\left|x-1\right|=3x+x-1=4x-1\)

* \(x< 1\Rightarrow3x+\left|x-1\right|=3x+1-x=2x+1\)

\(h.\sqrt{y+2\sqrt{y^2-2y+1}}=\sqrt{y+2\sqrt{\left(y-1\right)^2}}=\sqrt{y+2y-2}=\sqrt{3y-2}\left(y\ge1\right)\) hoặc: \(\sqrt{y+2-2y}=\sqrt{-y+2}\left(y< 1\right)\)

\(H=\sqrt{17-2\sqrt{32}}+\sqrt{17+2\sqrt{32}}\)

\(H^2=17-2\sqrt{32}+17+2\sqrt{32}+2\sqrt{\left(17-2\sqrt{32}\right)\left(17+2\sqrt{32}\right)}=34+2\sqrt{161}\)

\(H=\sqrt{34+2\sqrt{161}}\)

\(k.\sqrt{5+2\sqrt{6}}-\sqrt{5-2\sqrt{6}}=\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}=\sqrt{3}+\sqrt{2}-\sqrt{3}+\sqrt{2}=2\sqrt{2}\)

26 tháng 6 2019

\(a,\sqrt{\frac{5.\left(38^2-17^2\right)}{8.\left(47^2-19^2\right)}}\)

\(=\sqrt{\frac{5.\left(38-17\right)\left(38+17\right)}{8.\left(47-19\right)\left(47+19\right)}}\)

\(=\sqrt{\frac{5.21.55}{8.28.66}}\)

\(=\sqrt{\frac{5775}{14784}}=\frac{5\sqrt{231}}{2\sqrt{4370}}\)

26 tháng 6 2019

.bn tính lại \(\sqrt{14784}\)đi sao lạ vậy

a: \(A=\left(4+\sqrt{15}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)\cdot\sqrt{8-2\sqrt{15}}\)

\(=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\)

\(=32-8\sqrt{15}+8\sqrt{15}-30=2\)

b: \(\sqrt{2}\cdot B=\left(3-\sqrt{5}\right)\left(\sqrt{5}+1\right)+\left(3+\sqrt{5}\right)\left(\sqrt{5}-1\right)\)

\(\Leftrightarrow B\sqrt{2}=3\sqrt{5}+3-5-\sqrt{5}+3\sqrt{5}-3+5-\sqrt{5}\)

\(\Leftrightarrow B\sqrt{2}=4\sqrt{5}\)

hay \(B=2\sqrt{10}\)

d: \(D\sqrt{2}=\sqrt{5}+\sqrt{3}+\sqrt{5}-\sqrt{3}-2\cdot\left(\sqrt{5}-1\right)\)

\(=2\sqrt{5}-2\sqrt{5}+2=2\)

hay \(D=\sqrt{2}\)

3 tháng 7 2018

a.

\(\sqrt{9-\sqrt{17}}.\sqrt{9+\sqrt{17}}\\ =\sqrt{\left(9-\sqrt{17}\right)\left(9+\sqrt{17}\right)}\\ =\sqrt{81-17}\\ =\sqrt{64}\\=8\)

3 tháng 7 2018

\(a.VT=\sqrt{9-\sqrt{17}}.\sqrt{9+\sqrt{17}}=\sqrt{81-17}=8=VP\)

\(b.\dfrac{1}{5-2\sqrt{6}}+\dfrac{2}{5+2\sqrt{6}}=3\sqrt{3}-\sqrt{2}\) ( thiếu đề )

\(VT=\dfrac{1}{5-2\sqrt{6}}+\dfrac{2}{5+2\sqrt{6}}=\dfrac{1}{3-2\sqrt{3}.\sqrt{2}+2}+\dfrac{2}{3+2\sqrt{3}.\sqrt{2}+2}=\dfrac{1}{\sqrt{3}-\sqrt{2}}+\dfrac{2}{\sqrt{3}+\sqrt{2}}=\sqrt{3}+\sqrt{2}+2\sqrt{3}-2\sqrt{2}=3\sqrt{3}-\sqrt{2}=VP\)