\(\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9x-45}=4\)

\(\...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2023

a: ĐKXĐ: x-5>=0

=>x>=5

\(\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\cdot\sqrt{9x-45}=4\)

=>\(2\sqrt{x-5}+\sqrt{x-5}-\dfrac{1}{3}\cdot3\sqrt{x-5}=4\)

=>\(2\sqrt{x-5}=4\)

=>x-5=4

=>x=9(nhận)

b: ĐKXĐ: x-1>=0

=>x>=1

\(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}=4\)

=>\(\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}=4\)

=>\(-2\sqrt{x-1}=4\)

=>\(\sqrt{x-1}=-2\)(vô lý)

Vậy: Phương trình vô nghiệm

c: ĐKXĐ: x-2>=0

=>x>=2

\(\dfrac{1}{3}\sqrt{x-2}-\dfrac{2}{3}\cdot\sqrt{9x-18}+6\cdot\sqrt{\dfrac{x-2}{81}}=-4\)

=>\(\dfrac{1}{3}\sqrt{x-2}-\dfrac{2}{3}\cdot3\sqrt{x-2}+6\cdot\dfrac{\sqrt{x-2}}{9}=-4\)

=>\(\sqrt{x-2}\left(\dfrac{1}{3}-2+\dfrac{2}{3}\right)=-4\)

=>\(-\sqrt{x-2}=-4\)

=>x-2=16

=>x=18(nhận)

d: ĐKXĐ: x+3>=0

=>x>=-3

\(\sqrt{9x+27}+4\sqrt{x+3}-\dfrac{3}{4}\cdot\sqrt{16x+48}=0\)

=>\(3\sqrt{x+3}+4\sqrt{x+3}-\dfrac{3}{4}\cdot4\sqrt{x+3}=0\)

=>\(4\sqrt{x+3}=0\)

=>x+3=0

=>x=-3(nhận)

15 tháng 10 2023

a) \(\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9x-45}=4\)

\(2\sqrt{x-5}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9\left(x-5\right)}=4\)

\(2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)

\(2\sqrt{x-5}=4\)

\(\sqrt{x-5}=2\)

\(\left|x-5\right|=4\)

=> \(x-5=\pm4\)

\(x=\pm4+5\)

\(x=9;x=1\)

Vậy x=9; x=1

31 tháng 7 2017

\(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}=16\)

\(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}=16\)

\(\Leftrightarrow4\sqrt{x+1}=16\)

\(\Leftrightarrow\sqrt{x+1}=4\)

<=> x + 1 = 16

<=> x = 15 (nhận)

~ ~ ~

\(\sqrt{4x+20}-3\sqrt{5+x}+\dfrac{4}{3}\sqrt{9x+45}=6\)

\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)

\(\Leftrightarrow3\sqrt{x+5}=6\)

\(\Leftrightarrow\sqrt{x+5}=2\)

<=> x + 5 = 4

<=> x = - 1 (nhận)

31 tháng 7 2017

tính tan40°×tan45°×tan50°
#Help me -.-

20 tháng 9 2017

a) \(\sqrt{25x+75}+3\sqrt{x-2}=2+4\sqrt{x+3}+\sqrt{9x-18}\) (ĐKXĐ : \(x\ge2\) )

\(\Leftrightarrow5\sqrt{x+3}+3\sqrt{x-2}-4\sqrt{x+3}-3\sqrt{x-2}=2\)

\(\Leftrightarrow\sqrt{x+3}=2\)

\(\Leftrightarrow x+3=4\)

\(\Leftrightarrow x=1\) ( Thỏa mãn ĐKXĐ )

20 tháng 9 2017

c) \(\sqrt{4x+20}+\sqrt{x+5}-\dfrac{1}{3}\sqrt{9x+45}=4\) (ĐKXĐ : \(x\ge-5\) )

\(\Leftrightarrow2\sqrt{x+5}+\sqrt{x+5}-\sqrt{x+5}=4\)

\(\Leftrightarrow2\sqrt{x+5}=4\)

\(\Leftrightarrow\sqrt{x+5}=2\)

\(\Leftrightarrow x+5=4\)

\(\Leftrightarrow x=-1\) ( Thỏa mãn ĐKXĐ )

Vậy.......

25 tháng 10 2017

a.​\(\sqrt{9x+18}-5\sqrt{x+2}+\dfrac{4}{5}\sqrt{25x+50}=6\\ \sqrt{9\left(x+2\right)}-5\sqrt{x+2}+\dfrac{4}{5}\sqrt{25\left(x+2\right)}=6\\ 3\sqrt{x+2}-5\sqrt{x+2}+4\sqrt{x+2}=6\\ 2\sqrt{x+2}=6\\ \left\{{}\begin{matrix}x\ge2\\x+2=36\end{matrix}\right.\\ \left\{{}\begin{matrix}x>=2\\x=34\end{matrix}\right.\\ \)

Vậy.....

25 tháng 10 2017

tks @Vi Lê Bình Phương nha

a: \(=2\sqrt{x-3}+3\sqrt{x-3}-4\sqrt{x-3}+3-x\)

\(=\sqrt{x-3}+3-x\)

c: \(\Leftrightarrow7\sqrt{x-2}-2\sqrt{x-2}-3\sqrt{x-2}=18\)

=>2 căn x-2=18

=>x-2=81

=>x=83

a: \(\Leftrightarrow\dfrac{2x-3}{x-1}=4\)

=>4x-4=2x-3

=>2x=1

hay x=1/2

b: \(\Leftrightarrow\sqrt{\dfrac{2x-3}{x-1}}=2\)

=>(2x-3)=4x-4

=>4x-4=2x-3

=>2x=1

hay x=1/2(nhận)

c: \(\Leftrightarrow\sqrt{2x+3}\left(\sqrt{2x-3}-2\right)=0\)

=>2x+3=0 hoặc 2x-3=4

=>x=-3/2 hoặc x=7/2

e: \(\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)

=>căn (x-5)=2

=>x-5=4

hay x=9

AH
Akai Haruma
Giáo viên
23 tháng 9 2018

a)

ĐKXĐ: \(x> \frac{-5}{7}\)

Ta có: \(\frac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}\)

\(\Rightarrow 9x-7=\sqrt{7x+5}.\sqrt{7x+5}=7x+5\)

\(\Rightarrow 2x=12\Rightarrow x=6\) (hoàn toàn thỏa mãn)

Vậy......

b) ĐKXĐ: \(x\geq 5\)

\(\sqrt{4x-20}+3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9x-45}=4\)

\(\Leftrightarrow \sqrt{4}.\sqrt{x-5}+3\sqrt{\frac{1}{9}}.\sqrt{x-5}-\frac{1}{3}\sqrt{9}.\sqrt{x-5}=4\)

\(\Leftrightarrow 2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)

\(\Leftrightarrow 2\sqrt{x-5}=4\Rightarrow \sqrt{x-5}=2\Rightarrow x-5=2^2=4\Rightarrow x=9\)

(hoàn toàn thỏa mãn)

Vậy..........

AH
Akai Haruma
Giáo viên
23 tháng 9 2018

c) ĐK: \(x\in \mathbb{R}\)

Đặt \(\sqrt{6x^2-12x+7}=a(a\geq 0)\Rightarrow 6x^2-12x+7=a^2\)

\(\Rightarrow 6(x^2-2x)=a^2-7\Rightarrow x^2-2x=\frac{a^2-7}{6}\)

Khi đó:

\(2x-x^2+\sqrt{6x^2-12x+7}=0\)

\(\Leftrightarrow \frac{7-a^2}{6}+a=0\)

\(\Leftrightarrow 7-a^2+6a=0\)

\(\Leftrightarrow -a(a+1)+7(a+1)=0\Leftrightarrow (a+1)(7-a)=0\)

\(\Rightarrow \left[\begin{matrix} a=-1\\ a=7\end{matrix}\right.\) \(\Rightarrow a=7\)\(a\geq 0\)

\(\Rightarrow 6x^2-12x+7=a^2=49\)

\(\Rightarrow 6x^2-12x-42=0\Leftrightarrow x^2-2x-7=0\)

\(\Leftrightarrow (x-1)^2=8\Rightarrow x=1\pm 2\sqrt{2}\)

(đều thỏa mãn)

Vậy..........

20 tháng 10 2018

a,

\(\sqrt{1-4x+4x^2}=5\\ \sqrt{\left(2x-1\right)^2}=5\\ \left[{}\begin{matrix}2x-1=5\\2x-1=-5\end{matrix}\right.\\ \left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)

20 tháng 10 2018

b,

\(\sqrt{4-5x}=12\\ 4-5x=144\\ x=-28\)

AH
Akai Haruma
Giáo viên
3 tháng 8 2021

1. ĐKXĐ: $x\in\mathbb{R}$

PT $\Leftrightarrow 4x=\sqrt{(3x+1)^2}$

\(\Leftrightarrow \left\{\begin{matrix} x\geq 0\\ (4x)^2=(3x+1)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 0\\ (4x-3x-1)(4x+3x+1)=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq 0\\ (x-1)(7x+1)=0\end{matrix}\right.\Leftrightarrow x=1\)

Vậy $x=1$ là nghiệm của pt.

 

AH
Akai Haruma
Giáo viên
3 tháng 8 2021

2. ĐKXĐ: $x\geq -5$

PT $\Leftrightarrow \sqrt{4}.\sqrt{x+5}-3\sqrt{5+x}+\frac{4}{3}.\sqrt{9}.\sqrt{x+5}=0$

$\Leftrightarrow 2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=0$

$\Leftrightarrow 3\sqrt{x+5}=0$

$\Leftrightarrow \sqrt{x+5}=0$

$\Leftrightarrow x=-5$

 

3 tháng 8 2018

a) Đk: \(\left[{}\begin{matrix}x\le-1\\x\ge1\end{matrix}\right.\)

\(\sqrt{x^2-1}-x^2+1=0\)

\(\Leftrightarrow x^2-1-\sqrt{x^2-1}= 0\)

\(\Leftrightarrow\left(\sqrt{x^2-1}-1\right)\sqrt{x^2-1}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-1}-1=0\\\sqrt{x^2-1}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-1}=1\\x^2-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2=2\left(1\right)\\x^2=1\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow x=\pm\sqrt{2}\left(N\right)\)

\(\left(2\right)\Leftrightarrow x=\pm1\left(N\right)\)

Kl: \(x=\pm\sqrt{2}\), \(x=\pm1\)

b) Đk: \(\left[{}\begin{matrix}x\le-2\\x\ge2\end{matrix}\right.\)

\(\sqrt{x^2-4}-x+2=0\)

\(\Leftrightarrow\sqrt{x^2-4}=x-2\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2-4=x^2-4x+4\\x\ge2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4x=8\\x\ge2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2\left(N\right)\\x\ge2\end{matrix}\right.\)

kl: x=2

c) \(\sqrt{x^4-8x^2+16}=2-x\)

\(\Leftrightarrow\sqrt{\left(x^2-4\right)^2}=2-x\)

\(\Leftrightarrow\left|x^2-4\right|=2-x\) (*)

Th1: \(x^2-4< 0\Leftrightarrow-2< x< 2\)

(*) \(\Leftrightarrow x^2-4=x-2\Leftrightarrow x^2-x-2=0\Leftrightarrow\left[{}\begin{matrix}x=2\left(L\right)\\x=-1\left(N\right)\end{matrix}\right.\)

Th2: \(x^2-4\ge0\Leftrightarrow\left[{}\begin{matrix}x\le-2\\x\ge2\end{matrix}\right.\)

(*)\(\Leftrightarrow x^2-4=2-x\Leftrightarrow x^2+x-6=0\Leftrightarrow\left[{}\begin{matrix}x=2\left(N\right)\\x=-3\left(N\right)\end{matrix}\right.\)

Kl: x=-3, x=-1,x=2

d) \(\sqrt{9x^2+6x+1}=\sqrt{11-6\sqrt{2}}\)

\(\Leftrightarrow\sqrt{\left(3x+1\right)^2}=\sqrt{\left(3-\sqrt{2}\right)^2}\)

\(\Leftrightarrow\left|3x+1\right|=3-\sqrt{2}\) (*)

Th1: \(3x+1\ge0\Leftrightarrow x\ge-\dfrac{1}{3}\)

(*) \(\Leftrightarrow3x+1=3-\sqrt{2}\Leftrightarrow x=\dfrac{2-\sqrt{2}}{3}\left(N\right)\)

Th2: \(3x+1< 0\Leftrightarrow x< -\dfrac{1}{3}\)

(*) \(\Leftrightarrow3x+1=-3+\sqrt{2}\Leftrightarrow x=\dfrac{-4+\sqrt{2}}{3}\left(N\right)\)

Kl: \(x=\dfrac{2-\sqrt{2}}{3}\), \(x=\dfrac{-4+\sqrt{2}}{3}\)

e) Đk: \(x\ge-\dfrac{3}{2}\)

\(\sqrt{4^2-9}=2\sqrt{2x+3}\) \(\Leftrightarrow\sqrt{7}=2\sqrt{2x+3}\) \(\Leftrightarrow7=8x+12\)

\(\Leftrightarrow8x=-5\Leftrightarrow x=-\dfrac{5}{8}\left(N\right)\)

kl: \(x=-\dfrac{5}{8}\)

f) Đk: x >/ 5

\(\sqrt{4x-20}+3\sqrt{\dfrac{x-5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=4\)

\(\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)

\(\Leftrightarrow2\sqrt{x-5}=4\)

\(\Leftrightarrow\sqrt{x-5}=2\)

\(\Leftrightarrow x-5=4\)

\(\Leftrightarrow x=9\left(N\right)\)

kl: x=9

16 tháng 1 2019

Dài dữ