Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\sqrt{3^2}-\sqrt{7^2}+\sqrt{\left(-1\right)^2}=|3|-|7|+|-1|=3-7+1=-3\)
b) \(-2\sqrt{\left(-2\right)^2}+\sqrt{\left(-5\right)^2}+\sqrt{3^2}=-2|2|+|-5|+\left|3\right|=-4+5+3=4\)
c) \(\sqrt{\left(2-\sqrt{2}\right)^2}+\sqrt{\left(2+\sqrt{2}\right)^2}=\left|2-\sqrt{2}\right|+\left|2+\sqrt{2}\right|=2-\sqrt{2}+2+\sqrt{2}=4\)
d) \(\sqrt{\left(3\sqrt{2}\right)^2}-\sqrt{\left(1-\sqrt{2}\right)^2}=\left|3\sqrt{2}\right|-\left|1-\sqrt{2}\right|=3\sqrt{2}-\sqrt{2}+1=2\sqrt{2}+1\)
e) \(\sqrt{3-2\sqrt{2}}+\sqrt{3+2\sqrt{2}}=\sqrt{\left(\sqrt{2}-1\right)^2}+\sqrt{\left(\sqrt{2}+1\right)^2}=\left|\sqrt{2}-1\right|+\left|\sqrt{2}+1\right|=\sqrt{2}-1+\sqrt{2}+1=2\sqrt{2}\)
f) \(\sqrt{9-4\sqrt{5}}+\sqrt{9+4\sqrt{5}}=\sqrt{\left(\sqrt{5}-2\right)^2}+\sqrt{\left(\sqrt{5}+2\right)^2}=\left|\sqrt{5}-2\right|+\left|\sqrt{5}+2\right|=\sqrt{5}-2+\sqrt{5}+2=2\sqrt{5}\)
g) \(\sqrt{9-4\sqrt{2}}+\sqrt{11-6\sqrt{2}}=\sqrt{9-2\sqrt{8}}+\sqrt{2-2\sqrt{2}.3+9}=\sqrt{\left(\sqrt{8}-1\right)^2}+\sqrt{\left(\sqrt{2}-3\right)^2}=\sqrt{8}-1+3-\sqrt{2}=2-\sqrt{2}+\sqrt{8}\)
h) \(\sqrt{12+8\sqrt{2}}+\sqrt{6-4\sqrt{2}}=\sqrt{12+2\sqrt{4}\sqrt{8}}+\sqrt{6-2\sqrt{2}\sqrt{4}}=\sqrt{\left(\sqrt{4}+\sqrt{8}\right)^2}+\sqrt{\left(\sqrt{4}-\sqrt{2}\right)^2}=\sqrt{4}+\sqrt{8}+\sqrt{4}-\sqrt{2}\)
k) \(\left(2-\sqrt{3}\right)\sqrt{7+4\sqrt{3}}=\left(2-\sqrt{3}\right)\sqrt{\left(\sqrt{3}+2\right)^2}=\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)=4-3=1\)
1) \(\sqrt{12}\)+\(5\sqrt{3}-\sqrt{48}\)
= \(2\sqrt{3}+5\sqrt{3}-4\sqrt{3}\)
= (2+5-4).\(\sqrt{3}\)
= \(3\sqrt{3}\)
2)\(5\sqrt{5}+\sqrt{20}-3\sqrt{45}\)
= \(5\sqrt{5}+2\sqrt{5}-3.3\sqrt{5}\)
= \(5\sqrt{5}+2\sqrt{5}-9\sqrt{5}\)
= \(\left(5+2-9\right).\sqrt{5}\)
= -2\(\sqrt{2}\)
3)\(3\sqrt{32}+4\sqrt{8}-5\sqrt{18}\)
= \(3.4\sqrt{2}+4.2\sqrt{2}-5.3\sqrt{2}
\)
= 12\(\sqrt{2}\) \(+8\sqrt{2}\) \(-15\sqrt{2}\)
= \(\left(12+8-15\right).\sqrt{2}\)
= \(5\sqrt{2}\)
4)\(3\sqrt{12}-4\sqrt{27}+5\sqrt{48}\)
= \(3.2\sqrt{3}-4.3\sqrt{3}+5.4\sqrt{3}\)
= \(6\sqrt{3}-12\sqrt{3}+20\sqrt{3}\)
= \(\left(6-12+20\right).\sqrt{3}\)
= \(14\sqrt{3}\)
5)\(\sqrt{12}+\sqrt{75}-\sqrt{27}\)
= \(2\sqrt{3}+5\sqrt{3}-3\sqrt{3}\)
= \(\left(2+5-3\right).\sqrt{3}\)
= \(4\sqrt{3}\)
6) \(2\sqrt{18}-7\sqrt{2}+\sqrt{162}\)
= \(2.3\sqrt{2}-7\sqrt{2}+9\sqrt{2}\)
= 6\(\sqrt{2}-7\sqrt{2}+9\sqrt{2}\)
= \(\left(6-7+9\right).\sqrt{2}\)
= 8\(\sqrt{2}\)
7)\(3\sqrt{20}-2\sqrt{45}+4\sqrt{5}\)
= \(3.2\sqrt{5}-2.3\sqrt{5}+4\sqrt{5}\)
= \(6\sqrt{5}-6\sqrt{5}+4\sqrt{5}\)
= \(4\sqrt{5}\)
8)\(\left(\sqrt{2}+2\right).\sqrt{2}-2\sqrt{2}\)
= \(\left(\sqrt{2}\right)^2+2\sqrt{2}-2\sqrt{2}\)
= 2
1. Đặt A =\(\sqrt{\frac{129}{16}+\sqrt{2}}\)
\(\sqrt{16}\)A = \(\sqrt{129+16\sqrt{2}}\)
4A = \(\sqrt{\left(8\sqrt{2}+1\right)^2}\)
4A = \(8\sqrt{2}+1\)
⇒ A = \(\frac{\text{}8\sqrt{2}+1}{4}\)= \(2\sqrt{2}\) + \(\frac{1}{4}\)
2. Đặt B = \(\sqrt{\frac{289+4\sqrt{72}}{16}}\)
\(\sqrt{16}\)B = \(\sqrt{289+24\sqrt{2}}\)
4B = \(\sqrt{\left(12\sqrt{2}+1\right)^2}\)
4B = \(12\sqrt{2}+1\)
⇒ B = \(\frac{12\sqrt{2}+1}{4}\)= \(3\sqrt{2}+\frac{1}{4}\)
3. \(\sqrt{2-\sqrt{3}}\). \(\left(\sqrt{6}+\sqrt{2}\right)\)
= \(\sqrt{2-\sqrt{3}}\). \(\sqrt{2}.\left(\sqrt{3}+1\right)\)
= \(\sqrt{4-2\sqrt{3}}\) . \(\left(\sqrt{3}+1\right)\)
= \(\sqrt{\left(\sqrt{3}-1\right)^2}\) . \(\left(\sqrt{3}+1\right)\)
= \(\left(\sqrt{3}-1\right)\). \(\left(\sqrt{3}+1\right)\)
= \(\left(\sqrt{3}\right)^2\) - 12
= 3 - 1
= 2
4. \(\left(\sqrt{21}+7\right)\). \(\sqrt{10-2\sqrt{21}}\)
= \(\left(\sqrt{21}+7\right)\) . \(\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}\)
= \(\sqrt{7}\left(\sqrt{3}+\sqrt{7}\right)\) . \(\left(\sqrt{7}-\sqrt{3}\right)\)
= \(\sqrt{7}\) \(\left[\left(\sqrt{7}\right)^2-\left(\sqrt{3}\right)^2\right]\)
= \(\sqrt{7}\) . (7 - 3)
= 4\(\sqrt{7}\)
5. \(2.\left(\sqrt{10}-\sqrt{2}\right)\). \(\sqrt{4+\sqrt{6-2\sqrt{5}}}\)
= \(2.\left(\sqrt{10}-\sqrt{2}\right)\) . \(\sqrt{4+\sqrt{5}-1}\)
= \(2.\left(\sqrt{10}-\sqrt{2}\right)\) . \(\sqrt{3+\sqrt{5}}\)
= \(\left(\sqrt{10}-\sqrt{2}\right)\) . \(\sqrt{12+4\sqrt{5}}\)
= \(\left(\sqrt{10}-\sqrt{2}\right)\) . \(\left(\sqrt{10}+\sqrt{2}\right)\)
= \(\left(\sqrt{10}\right)^2-\left(\sqrt{2}\right)^2\)
= 10 - 2
= 8
6. \(\left(4\sqrt{2}+\sqrt{30}\right)\). \(\left(\sqrt{5}-\sqrt{3}\right)\). \(\sqrt{4-\sqrt{15}}\)
= \(\sqrt{2}\)\(\left(4+\sqrt{15}\right)\) . \(\left(\sqrt{5}-\sqrt{3}\right)\) . \(\sqrt{4-\sqrt{15}}\)
= \(\left(4+\sqrt{15}\right)\) . \(\left(\sqrt{5}-\sqrt{3}\right)\) . \(\sqrt{8-2\sqrt{15}}\)
= \(\left(4+\sqrt{15}\right)\) . \(\left(\sqrt{5}-\sqrt{3}\right)\) . \(\left(\sqrt{5}-\sqrt{3}\right)\)
= \(\left(4+\sqrt{15}\right)\) . \(\left(\sqrt{5}-\sqrt{3}\right)^2\)
= \(\left(4+\sqrt{15}\right)\). \(\left(8-2\sqrt{15}\right)\)
= 32 - \(8\sqrt{15}\) + \(8\sqrt{15}\) - 30
= 2
7. \(\left(7-\sqrt{14}\right)\) . \(\sqrt{9-2\sqrt{14}}\)
= \(\sqrt{7}\) \(\left(\sqrt{7}-\sqrt{2}\right)\). \(\left(\sqrt{7}-\sqrt{2}\right)\)
= \(\sqrt{7}\). \(\left(\sqrt{7}-\sqrt{2}\right)^2\)
= \(\sqrt{7}\) . \(\left(9-2\sqrt{14}\right)\)
= 9\(\sqrt{7}\) - 14\(\sqrt{2}\)
TICK MÌNH NHA!
a)\(\left(4\sqrt{2}+\sqrt{30}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{4-\sqrt{15}}\)
\(=\left(4\sqrt{10}-4\sqrt{6}+\sqrt{150}-\sqrt{90}\right)\sqrt{4-\sqrt{15}}\)
\(=\left(4\sqrt{10}-4\sqrt{6}+5\sqrt{6}-3\sqrt{10}\right)\sqrt{4-\sqrt{15}}\)
\(=\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
\(=\sqrt{10\left(4-\sqrt{15}\right)}+\sqrt{6\left(4-\sqrt{15}\right)}\)
\(=\sqrt{40-10\sqrt{15}}+\sqrt{24-6\sqrt{15}}\)
\(=\sqrt{\left(5-\sqrt{15}\right)^2}+\sqrt{\left(3-\sqrt{15}\right)^2}\)
\(=5-\sqrt{15}+\sqrt{15}-3\)
\(=2\)
b) \(2\left(\sqrt{10}-\sqrt{2}\right)\left(4+\sqrt{6-2\sqrt{5}}\right)\)
\(=\left(2\sqrt{10}-2\sqrt{2}\right)\left(4+\sqrt{\left(1-\sqrt{5}\right)^2}\right)\)
\(=\left(2\sqrt{10}-2\sqrt{2}\right)\left(4+\sqrt{5}-1\right)\)
\(=\left(2\sqrt{10}-2\sqrt{2}\right)\left(3+\sqrt{5}\right)\)
\(=6\sqrt{10}+2\sqrt{50}-6\sqrt{2}-2\sqrt{10}\)
\(=6\sqrt{10}+10\sqrt{2}-6\sqrt{2}-2\sqrt{10}\)
\(=4\sqrt{10}+4\sqrt{2}\)
c) \(\left(\sqrt{7}+\sqrt{14}\right)\sqrt{9-2\sqrt{14}}\)
\(=\left(\sqrt{7}+\sqrt{14}\right)\sqrt{\left(\sqrt{2}-\sqrt{7}\right)^2}\)
\(=\left(\sqrt{7}+\sqrt{14}\right)\left(\sqrt{7}-\sqrt{2}\right)\)
\(=7\sqrt{7}-7\sqrt{2}+\sqrt{98}-\sqrt{28}\)
\(=7\sqrt{7}-7\sqrt{2}+7\sqrt{2}-2\sqrt{7}\)
\(=5\sqrt{7}\)
d) \(\sqrt{\dfrac{289+4\sqrt{72}}{16}}\)
\(=\sqrt{\dfrac{289+42\sqrt{2}}{16}}\)
\(=\dfrac{\sqrt{289+42\sqrt{2}}}{\sqrt{4^2}}\)
\(=\dfrac{\sqrt{\left(1+12\sqrt{2}\right)^2}}{4}\)
\(=\dfrac{1+12\sqrt{2}}{4}\)
e) \(\left(\sqrt{21}+7\right)\sqrt{10-2\sqrt{21}}\)
\(=\left(\sqrt{21}+\sqrt{7}\right)\sqrt{\left(\sqrt{3}-\sqrt{7}\right)^2}\)
\(=\left(\sqrt{21}+\sqrt{7}\right)\left(\sqrt{7}-\sqrt{3}\right)\)
\(=\sqrt{147}-\sqrt{63}+7-\sqrt{21}\)
\(=7\sqrt{3}-\sqrt{63}+7-\sqrt{21}\)
f) bạn xem đề lại nhé
A = \(\sqrt{2}\left(\sqrt{8}-\sqrt{32}-2\sqrt{18}\right)=\sqrt{16}-\sqrt{64}-2\sqrt{36}=4-8-2\cdot6=-4-12=-16\)
--
\(B=\sqrt{2}-\sqrt{3-\sqrt{5}}=\dfrac{2-\sqrt{6-2\sqrt{5}}}{\sqrt{2}}=\dfrac{2-\sqrt{\left(\sqrt{5}-1\right)^2}}{\sqrt{2}}=\dfrac{2-\sqrt{5}+1}{\sqrt{2}}=\dfrac{3-\sqrt{5}}{\sqrt{2}}\)
--
\(C=\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}=\dfrac{\sqrt{8-2\sqrt{7}}}{\sqrt{2}}-\dfrac{\sqrt{8+2\sqrt{7}}}{\sqrt{2}}=\dfrac{\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}}{\sqrt{2}}=\dfrac{\sqrt{7}-1-\sqrt{7}-1}{\sqrt{2}}=-\dfrac{2}{\sqrt{2}}=-\sqrt{2}\)
còn lại lúc nx mk lm nốt nhé, h bận
bài 1:
a)\(\left(3-\sqrt{2}\right)\sqrt{7+4\sqrt{3}}\)
\(=\left(3-\sqrt{2}\right)\sqrt{\left(2+\sqrt{3}\right)^2}\)
\(=\left(3-\sqrt{2}\right)\left(2+\sqrt{3}\right)\)\(do2>\sqrt{3}\)
\(=6+3\sqrt{3}-2\sqrt{2}-\sqrt{6}\)
b) \(\left(\sqrt{3}+\sqrt{5}\right)\sqrt{7-2\sqrt{10}}\)
\(=\left(\sqrt{3}+\sqrt{5}\right)\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}\)
\(=\left(\sqrt{3}+\sqrt{5}\right)\left(\sqrt{5}-\sqrt{2}\right)do\sqrt{5}>\sqrt{2}\)
\(=\sqrt{15}-\sqrt{6}+5-\sqrt{10}\)
c)\(\left(2+\sqrt{5}\right)\sqrt{9-4\sqrt{5}}\)
\(=\left(2+\sqrt{5}\right)\sqrt{\left(\sqrt{5}-2\right)^2}\)
\(=\left(2+\sqrt{5}\right)\left(\sqrt{5}-2\right)do\sqrt{5}>2\)
\(=5-4\)
\(=1\left(hđt.3\right)\)
d)\(\left(\sqrt{6}+\sqrt{10}\right)\sqrt{4-\sqrt{15}}\)
\(=\sqrt{2}\left(\sqrt{3}+\sqrt{5}\right)\sqrt{4-\sqrt{15}}\)
\(=\left(\sqrt{3}+\sqrt{5}\right)\sqrt{8-2\sqrt{15}}\)
\(=\left(\sqrt{3}+\sqrt{5}\right)\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\)
\(=\left(\sqrt{3}+\sqrt{5}\right)\left(\sqrt{5}-\sqrt{3}\right)do\sqrt{5}>\sqrt{3}\)
\(=5-3\)
\(=2\)
e)\(\sqrt{2}\left(\sqrt{8}-\sqrt{32}+3\sqrt{18}\right)\)
\(=\sqrt{2}\left(2\sqrt{2}-4\sqrt{2}+9\sqrt{2}\right)\)
\(=2\left(2-4+9\right)\)
\(=2.7=14\)
f)\(\sqrt{2}\left(\sqrt{2}-\sqrt{3-\sqrt{5}}\right)\)
\(=2-\sqrt{6-2\sqrt{5}}\)
\(=2-\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(=2-\left(\sqrt{5}-1\right)\)
\(=2-\sqrt{5}+1\)
\(=3-\sqrt{5}\)
g)\(\sqrt{3}-\sqrt{2}\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}\)
\(=\sqrt{3}-\sqrt{2}\left(\sqrt{3}+\sqrt{2}\right)\)
\(=\sqrt{3}-\sqrt{6}-2\)
h) \(\left(\sqrt{2}-\sqrt{3+\sqrt{5}}\right)\sqrt{2}+2\sqrt{5}\)
\(=\left(2-\sqrt{6+2\sqrt{5}}\right)+2\sqrt{5}\)
\(=\left(2-\sqrt{\left(\sqrt{5}+1\right)^2}\right)+2\sqrt{5}\)
\(=2-\left(\sqrt{5}+1\right)+2\sqrt{5}\left(do\sqrt{5}>1\right)\)
\(=2-\sqrt{5}-1+2\sqrt{5}\)
\(=1-\sqrt{5}\)
bài 2)
a) \(\sqrt{4x^2-4x+1}=5\)
\(\Leftrightarrow\sqrt{\left(2x-1\right)^2}=5\)
\(\Leftrightarrow2x-1=5\)hoặc \(\Leftrightarrow2x-1=-5\)
\(\Leftrightarrow x=3\)hoặc \(\Leftrightarrow x=-2\)
Vậy x = 3 hoặc x = -2
Lời giải:
\(B=(\sqrt{2}-\sqrt{3-\sqrt{5}})\sqrt{2}=2-\sqrt{6-2\sqrt{5}}\)
\(=2-\sqrt{5+1-2\sqrt{5}}=2-\sqrt{(\sqrt{5}-1)^2}=2-(\sqrt{5}-1)=3-\sqrt{5}\)
\(C=\sqrt{4-\sqrt{7}}-\sqrt{4}+\sqrt{7}=\sqrt{\frac{8-2\sqrt{7}}{2}}-2+\sqrt{7}\)
\(=\sqrt{\frac{7+1-2\sqrt{7}}{2}}-2+\sqrt{7}\)
\(=\sqrt{\frac{(\sqrt{7}-1)^2}{2}}-2+\sqrt{7}\)
\(=\frac{|\sqrt{7}-1|}{\sqrt{2}}-2+\sqrt{7}=\frac{\sqrt{7}-1}{\sqrt{2}}-2+\sqrt{7}\)
$D$: bạn xem lại đề, mình thấy biểu thức không rút gọn được nữa.
\(E=\sqrt{4+2\sqrt{2}}.\sqrt{2+\sqrt{2+\sqrt{2}}}.\sqrt{2-\sqrt{2+\sqrt{2}}}\)
\(=\sqrt{4+2\sqrt{2}}.\sqrt{2^2-(2+\sqrt{2})}\)
\(=\sqrt{4+2\sqrt{2}}.\sqrt{2-\sqrt{2}}=\sqrt{2}.\sqrt{2+\sqrt{2}}.\sqrt{2-\sqrt{2}}\)
\(=\sqrt{2}.\sqrt{2^2-(\sqrt{2})^2}=\sqrt{2}.\sqrt{2}=2\)
\(F=(\sqrt{2}-\sqrt{3+\sqrt{5}})\sqrt{2}+2\sqrt{5}\)
\(=2-\sqrt{6+2\sqrt{5}}+2\sqrt{5}\)
\(=2-\sqrt{5+1-2\sqrt{5}}+2\sqrt{5}\)
\(=2-\sqrt{(\sqrt{5}-1)^2}+2\sqrt{5}\)
\(=2-(\sqrt{5}-1)+2\sqrt{5}=3+\sqrt{5}\)
\(G=(\sqrt{14}-\sqrt{10}).\sqrt{6+\sqrt{35}}=\sqrt{2}(\sqrt{7}-\sqrt{5})\sqrt{6+\sqrt{35}}\)
\(=(\sqrt{7}-\sqrt{5})\sqrt{12+2\sqrt{35}}=(\sqrt{7}-\sqrt{5}).\sqrt{7+5+2\sqrt{7.5}}\)
\(=(\sqrt{7}-\sqrt{5}).\sqrt{(\sqrt{7}+\sqrt{5})^2}=(\sqrt{7}-\sqrt{5})(\sqrt{7}+\sqrt{5})=7-5=2\)
\(H=\sqrt{11-4\sqrt{7}}-\sqrt{2}.\sqrt{8+3\sqrt{7}}\)
\(=\sqrt{2^2+7-2.2.\sqrt{7}}-\sqrt{16+6\sqrt{7}}\)
\(=\sqrt{(2-\sqrt{7})^2}-\sqrt{3^2+7+2.3\sqrt{7}}=\sqrt{(2-\sqrt{7})^2}-\sqrt{(3+\sqrt{7})^2}\)
\(=|2-\sqrt{7}|-|3+\sqrt{7}|=\sqrt{7}-2-(3+\sqrt{7})=-5\)
a)
\(A=\sqrt{26+15\sqrt{3}}=\sqrt{\frac{52+30\sqrt{3}}{2}}=\sqrt{\frac{27+25+2\sqrt{27.25}}{2}}\)
\(=\sqrt{\frac{(\sqrt{27}+\sqrt{25})^2}{2}}=\frac{\sqrt{27}+\sqrt{25}}{\sqrt{2}}=\frac{3\sqrt{3}+5}{\sqrt{2}}=\frac{3\sqrt{6}+5\sqrt{2}}{2}\)
b)
\(B\sqrt{2}=\sqrt{8+2\sqrt{7}}-\sqrt{8-2\sqrt{7}}-2\)
\(=\sqrt{7+1+2\sqrt{7}}-\sqrt{7+1-2\sqrt{7}}-2\)
\(=\sqrt{(\sqrt{7}+1)^2}-\sqrt{(\sqrt{7}-1)^2}-2=\sqrt{7}+1-(\sqrt{7}-1)-2=0\)
\(\Rightarrow B=0\)
c)
\(C=\sqrt{8-2\sqrt{15}}-\sqrt{8+2\sqrt{15}}=\sqrt{3+5-2\sqrt{3.5}}-\sqrt{3+5+2\sqrt{3.5}}\)
\(=\sqrt{(\sqrt{5}-\sqrt{3})^2}-\sqrt{(\sqrt{5}+\sqrt{3})^2}=(\sqrt{5}-\sqrt{3})-(\sqrt{5}+\sqrt{3})=-2\sqrt{3}\)
d)
\(D=(\sqrt{6}-2)(5+2\sqrt{6})\sqrt{5-2\sqrt{6}}\)
\(=\sqrt{2}(\sqrt{3}-\sqrt{2})(2+3+2\sqrt{2.3})\sqrt{2+3-2\sqrt{2.3}}\)
\(=\sqrt{2}(\sqrt{3}-\sqrt{2})(\sqrt{3}+\sqrt{2})^2\sqrt{(\sqrt{3}-\sqrt{2})^2}\)
\(=\sqrt{2}(\sqrt{3}-\sqrt{2})^2(\sqrt{3}+\sqrt{2})^2=\sqrt{2}[(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})]^2\)
\(=\sqrt{2}.1^2=\sqrt{2}\)
e)
\(E=(\sqrt{10}-\sqrt{2})\sqrt{3+\sqrt{5}}=(\sqrt{5}-1).\sqrt{2}.\sqrt{3+\sqrt{5}}\)
\(=(\sqrt{5}-1)\sqrt{6+2\sqrt{5}}=(\sqrt{5}-1)\sqrt{5+1+2\sqrt{5.1}}\)
\(=(\sqrt{5}-1)\sqrt{(\sqrt{5}+1)^2}=(\sqrt{5}-1)(\sqrt{5}+1)=4\)
f)
\(F=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{20+9-2\sqrt{20.9}}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{(\sqrt{20}-3)^2}}}=\sqrt{\sqrt{5}-\sqrt{3-(\sqrt{20}-3)}}\)
\(=\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}=\sqrt{\sqrt{5}-\sqrt{5+1-2\sqrt{5}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{(\sqrt{5}-1)^2}}=\sqrt{\sqrt{5}-(\sqrt{5}-1)}=\sqrt{1}=1\)
a) \(\left(\sqrt{8}+\sqrt{72}-\sqrt{2}\right).\sqrt{2}\)
\(=\left(2\sqrt{2}+6\sqrt{2}-\sqrt{2}\right).\sqrt{2}\)
\(=7\sqrt{2}.\sqrt{2}=7.2=14\)
b) \(\left(\sqrt{5}+\sqrt{2}+1\right)\left(\sqrt{5}-1\right)\)
\(=5-\sqrt{5}+\sqrt{10}-\sqrt{2}+\sqrt{5}-1\)
\(=4+\sqrt{10}-\sqrt{2}\)
c) \(\left(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\right)^2\)
\(=\left(\sqrt{4+\sqrt{7}}\right)^2-2\sqrt{4+\sqrt{7}}\sqrt{4-\sqrt{7}}+\left(\sqrt{4-\sqrt{7}}\right)^2\)
\(=\left(4+\sqrt{7}\right)-6+\left(4-\sqrt{7}\right)\)
\(=4+\sqrt{7}-6+4-\sqrt{7}=2\)
d) \(\left(\sqrt{2}+1+\sqrt{3}\right).\left(\sqrt{2}+1-\sqrt{3}\right)\)
\(=\left(\sqrt{2}+1\right)^2-3=2+2\sqrt{2}+1-3=2\sqrt{2}\)
e) \(\left(\sqrt{\frac{9}{2}}+\sqrt{\frac{1}{2}}-\sqrt{2}\right).\sqrt{2}\)
\(=3+1-2=2\)(nhân vào)
f) \(\left(5\sqrt{3}+3\sqrt{5}\right):\sqrt{15}\)
\(=\left(\sqrt{75}+\sqrt{45}\right):\sqrt{15}=\sqrt{5}+\sqrt{3}\)(chia đa tức cho đơn thức)
có sai xót mong m.n bỏ qa cho ♥
a) Ta có: \(\left(\sqrt{6}+\sqrt{2}\right)\cdot\left(\sqrt{3}-2\right)\cdot\left(\sqrt{2+\sqrt{3}}\right)\)
\(=\sqrt{2}\cdot\left(\sqrt{3}+1\right)\cdot\left(\sqrt{3}-2\right)\cdot\sqrt{2+\sqrt{3}}\)
\(=\sqrt{4+2\sqrt{3}}\cdot\left(\sqrt{3}+1\right)\cdot\left(\sqrt{3}-2\right)\)
\(=\sqrt{3+2\cdot\sqrt{3}\cdot1+1}\cdot\left(\sqrt{3}+1\right)\cdot\left(\sqrt{3}-2\right)\)
\(=\sqrt{\left(\sqrt{3}+1\right)^2}\cdot\left(\sqrt{3}+1\right)\cdot\left(\sqrt{3}-2\right)\)
\(=\left|\sqrt{3}+1\right|\cdot\left(\sqrt{3}+1\right)\cdot\left(\sqrt{3}-2\right)\)
\(=\left(\sqrt{3}+1\right)\cdot\left(\sqrt{3}+1\right)\cdot\left(\sqrt{3}-2\right)\)(Vì \(\sqrt{3}>1>0\))
\(=\left(4+2\sqrt{3}\right)\cdot\left(\sqrt{3}-2\right)\)
\(=2\cdot\left(\sqrt{3}+2\right)\left(\sqrt{3}-2\right)\)
\(=2\cdot\left(3-4\right)\)
\(=-2\)
b) Ta có: \(\sqrt{2}\cdot\left(\sqrt{2-\sqrt{3}}\right)\cdot\left(\sqrt{3}+1\right)\)
\(=\sqrt{4-2\sqrt{3}}\cdot\left(\sqrt{3}+1\right)\)
\(=\sqrt{3-2\cdot\sqrt{3}\cdot1+1}\cdot\left(\sqrt{3}+1\right)\)
\(=\sqrt{\left(\sqrt{3}-1\right)^2}\cdot\left(\sqrt{3}+1\right)\)
\(=\left|\sqrt{3}-1\right|\cdot\left(\sqrt{3}+1\right)\)
\(=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)\)(Vì \(\sqrt{3}>1\))
\(=3-1=2\)
c) Ta có: \(\left(\sqrt{10}-\sqrt{6}\right)\cdot\left(\sqrt{4-\sqrt{15}}\right)\)
\(=\sqrt{2}\cdot\sqrt{4-\sqrt{15}}\cdot\left(\sqrt{5}-\sqrt{3}\right)\)
\(=\sqrt{8-2\sqrt{15}}\cdot\left(\sqrt{5}-\sqrt{3}\right)\)
\(=\sqrt{5-2\cdot\sqrt{5}\cdot\sqrt{3}+3}\cdot\left(\sqrt{5}-\sqrt{3}\right)\)
\(=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\cdot\left(\sqrt{5}-\sqrt{3}\right)\)
\(=\left|\sqrt{5}-\sqrt{3}\right|\cdot\left(\sqrt{5}-\sqrt{3}\right)\)
\(=\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)\)(Vì \(\sqrt{5}>\sqrt{3}\))
\(=8-2\sqrt{15}\)
d) Ta có: \(\left(\sqrt{3}-\sqrt{12}\right)\cdot\left(\sqrt{5+2\sqrt{6}}\right)\)
\(=\sqrt{3}\cdot\left(1-2\right)\cdot\sqrt{3+2\cdot\sqrt{3}\cdot\sqrt{2}+2}\)
\(=-\sqrt{3}\cdot\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}\)
\(=-\sqrt{3}\cdot\left|\sqrt{3}+\sqrt{2}\right|\)
\(=-\sqrt{3}\cdot\left(\sqrt{3}+\sqrt{2}\right)\)(Vì \(\sqrt{3}>\sqrt{2}>0\))
\(=-3-\sqrt{6}\)
e) Ta có: \(\sqrt{2-\sqrt{3}}\cdot\left(\sqrt{6}-\sqrt{2}\right)\cdot\left(2+\sqrt{3}\right)\)
\(=\sqrt{2}\cdot\sqrt{2-\sqrt{3}}\cdot\left(\sqrt{3}-1\right)\cdot\left(2+\sqrt{3}\right)\)
\(=\sqrt{4-2\sqrt{3}}\cdot\left(\sqrt{3}-1\right)\cdot\left(\sqrt{3}+2\right)\)
\(=\sqrt{3-2\cdot\sqrt{3}\cdot1+1}\cdot\left(\sqrt{3}-1\right)\cdot\left(\sqrt{3}+2\right)\)
\(=\sqrt{\left(\sqrt{3}-1\right)^2}\cdot\left(\sqrt{3}-1\right)\cdot\left(\sqrt{3}+2\right)\)
\(=\left|\sqrt{3}-1\right|\cdot\left(\sqrt{3}-1\right)\cdot\left(\sqrt{3}+2\right)\)
\(=\left(\sqrt{3}-1\right)\left(\sqrt{3}-1\right)\left(\sqrt{3}+2\right)\)(Vì \(\sqrt{3}>1\))
\(=\frac{\left(4-2\sqrt{3}\right)\left(4+2\sqrt{3}\right)}{2}\)
\(=\frac{16-12}{2}=\frac{4}{2}=2\)
f) Ta có: \(\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{4+2\cdot2\cdot\sqrt{3}+3}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\left|2+\sqrt{3}\right|}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\left(2+\sqrt{3}\right)}}}\)(Vì \(2>\sqrt{3}>0\))
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-20-10\sqrt{3}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{28-10\sqrt{3}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{25-2\cdot5\cdot\sqrt{3}+3}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\left|5-\sqrt{3}\right|}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\left(5-\sqrt{3}\right)}}\)(Vì \(5>\sqrt{3}\))
\(=\sqrt{4+\sqrt{5\sqrt{3}+25-5\sqrt{3}}}\)
\(=\sqrt{4+\sqrt{25}}\)
\(=\sqrt{4+5}=\sqrt{9}=3\)
a.
$A=\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}}$
$A\sqrt{2}=\sqrt{4-2\sqrt{3}}+\sqrt{4+2\sqrt{3}}$
$A\sqrt{2}=\sqrt{(\sqrt{3}-1)^2}+\sqrt{(\sqrt{3}+1)^2}$
$=|\sqrt{3}-1|+|\sqrt{3}+1|=\sqrt{3}-1+\sqrt{3}+1=2\sqrt{3}$
$\Rightarrow A=2\sqrt{3}: \sqrt{2}=\sqrt{6}$
---------------------
$B=\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}$
$B\sqrt{2}=\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}$
$B\sqrt{2}=\sqrt{(\sqrt{7}-1)^2}-\sqrt{(\sqrt{7}+1)^2}$
$=|\sqrt{7}-1|-|\sqrt{7}+1|=\sqrt{7}-1-(\sqrt{7}+1)=-2$
$\Rightarrow B=-2:\sqrt{2}=-\sqrt{2}$
\(a,\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}}\)
\(A-\sqrt{2}=\left(\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}}\right)\cdot\sqrt{2}\\ =\sqrt{2-\sqrt{3}}\cdot\sqrt{2}-\sqrt{2+\sqrt{3}}\cdot\sqrt{2}\\ =\sqrt{\left(2-\sqrt{3}\right)\cdot2}-\sqrt{\left(2+\sqrt{3}\right)\cdot2}\\ =\sqrt{4-2\sqrt{3}}-\sqrt{4+2\sqrt{3}}\\ =\sqrt{3-2\sqrt{3}+1}-\sqrt{3+2\sqrt{3}+1}\\ =\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{\left(\sqrt{3}+1\right)^2}\\ =\left|\sqrt{3}-1\right|-\left|\sqrt{3}+1\right|\\ =\sqrt{3}-1-\sqrt{3}-1\\ =-2\)
Ta có :
\(A-\sqrt{2}=-2\\ \Leftrightarrow A=\dfrac{-2}{\sqrt{2}}=\dfrac{-\left(\sqrt{2}\right)^2}{\sqrt{2}}=-\sqrt{2}\)
__
C làm giống câu a, nhé.
__
\(\sqrt{\left(2\sqrt{5}+1\right)^2}-\sqrt{\left(\sqrt{5}-2\right)^2}\\ =\left|2\sqrt{5}+1\right|-\left|\sqrt{5}-2\right|\\ =2\sqrt{5}+1-\sqrt{5}+2\\ =3+\sqrt{5}\)
__
\(\sqrt{52-16\sqrt{3}}+\sqrt{\left(4\sqrt{3}-7\right)^2}\\ =\sqrt{48-2\cdot4\cdot\sqrt{3}\cdot2+4}+\left|4\sqrt{3}-7\right|\\ =\sqrt{\left(4\sqrt{3}\right)^2-2\cdot4\cdot\sqrt{3}\cdot2+2^2}+4\sqrt{3}-7\\ =\sqrt{\left(4\sqrt{3}-2\right)^2}+4\sqrt{3}-7\\ =4\sqrt{3}-2+4\sqrt{3}-7\\ =8\sqrt{3}-9\)