K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2019

\(1=\left(a+b\right)\left[\left(a+b\right)^2-3ab\right]\ge\left(a+b\right)\left[\left(a+b\right)^2-\frac{3}{4}\left(a+b\right)^2\right]=\frac{\left(a+b\right)^3}{4}\)

\(\Rightarrow\left(a+b\right)^3\le4\Rightarrow a+b\le\sqrt[3]{4}\)

\(A=\sqrt{a}+\sqrt{b}\le\sqrt{2\left(a+b\right)}\le\sqrt{2\sqrt[3]{4}}\)

\("="\Leftrightarrow a=b=\frac{1}{\sqrt[3]{2}}\)

a: \(=\sqrt{17^2\cdot21}=17\sqrt{21}\)

b: \(=\sqrt{2.5\cdot2.5\cdot5\cdot20}=2.5\cdot10=25\)

30 tháng 9 2017

\(\left(5+\frac{2\sqrt{6}}{\sqrt{3}}+\sqrt{2}\right)-\left(5-\frac{2\sqrt{6}}{\sqrt{3}}-\sqrt{2}\right)\)

=\(5+\frac{2\sqrt{6}}{\sqrt{3}}+\sqrt{2}-5+\frac{2\sqrt{6}}{\sqrt{3}}+\sqrt{2}\)

=\(\left(5-5\right)+\left(\frac{2\sqrt{6}}{\sqrt{3}}+\frac{2\sqrt{6}}{\sqrt{3}}\right)+\left(\sqrt{2}+\sqrt{2}\right)\)

=\(0+\frac{4\sqrt{6}}{\sqrt{3}}+2\sqrt{2}\)

=\(\frac{4\sqrt{2}.\sqrt{3}}{\sqrt{3}}+2\sqrt{2}\)

=\(4\sqrt{2}+2\sqrt{2}\)

=\(6\sqrt{2}\)

26 tháng 7 2018

Giup mình phần 3,4,5 của bài 2 với bài 4 nữa . Helpppp me !!

8 tháng 8 2020

Đặt \(A=2\sqrt{3}\left(2\sqrt{6}-\sqrt{3}+1\right)\)

\(A=4\sqrt{18}-2.3+2\sqrt{3}\)

\(A=12\sqrt{2}+2\sqrt{3}-6\)