Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (1/3)^500=(1/3)^5*100=(1/3*5)^100=(5/3)^100
(1/5)^300=(1/5)^3*100=(1/5*3)^100=(3/5)^100
Vì 5/3 >3/5
=>(5/3)^100 > (3/5)^100
Vậy (1/3)^500>(1/5)^300
Dấu "^" là dấu lũy thừa nha bạn
1. a) Ta có: M = |x + 15/19| \(\ge\)0 \(\forall\)x
Dấu "=" xảy ra <=> x + 15/19 = 0 <=> x = -15/19
Vậy MinM = 0 <=> x = -15/19
b) Ta có: N = |x - 4/7| - 1/2 \(\ge\)-1/2 \(\forall\)x
Dấu "=" xảy ra <=> x - 4/7 = 0 <=> x = 4/7
Vậy MinN = -1/2 <=> x = 4/7
2a) Ta có: P = -|5/3 - x| \(\le\)0 \(\forall\)x
Dấu "=" xảy ra <=> 5/3 - x = 0 <=> x = 5/3
Vậy MaxP = 0 <=> x = 5/3
b) Ta có: Q = 9 - |x - 1/10| \(\le\)9 \(\forall\)x
Dấu "=" xảy ra <=> x - 1/10 = 0 <=> x = 1/10
Vậy MaxQ = 9 <=> x = 1/10
1/ \(A=3\left|2x-1\right|-5\)
Ta có: \(\left|2x-1\right|\ge0\)
\(\Rightarrow3\left|2x-1\right|\ge0\)
\(\Rightarrow3\left|2x-1\right|-5\ge-5\)
Để A nhỏ nhất thì \(3\left|2x-1\right|-5\)nhỏ nhất
Vậy \(Min_A=-5\)
3 ) \(A=5+\left|\frac{1}{3}-x\right|\)
Ta có : \(\left|\frac{1}{3}-x\right|\ge0\)
\(\Rightarrow5+\left|\frac{1}{3}-x\right|\ge5\)
Dấu " = " xảy ra khi và chỉ khi \(\frac{1}{3}-x=0\)
\(\Leftrightarrow x=\frac{1}{3}\)
Vậy \(Min_A=5\) khi và chỉ khi \(x=\frac{1}{3}\)
\(B=2-\left|x+\frac{2}{3}\right|\)
Ta có : \(\left|x+\frac{2}{3}\right|\ge0\)
\(\Rightarrow2-\left|x+\frac{2}{3}\right|\ge2\)
Dấu " = " xảy ra khi và chỉ khi \(x+\frac{2}{3}=0\)
\(x=-\frac{2}{3}\)
Vậy \(Min_B=2\) khi và chỉ khi \(x=-\frac{2}{3}\)
c, Vì \(\left\{{}\begin{matrix}\left|x-5,4\right|\ge0\\\left|2,6-x\right|\ge0\end{matrix}\right.\) với mọi x
=>\(\left|x-5,4\right|+\left|2,6-x\right|\ge0\) với mọi x
Do đó \(\left|x-5,4\right|+\left|2,6-x\right|=0\) khi và chỉ khi \(\left\{{}\begin{matrix}\left|x-5,4\right|=0\\\left|2,6-x\right|=0\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}x=5,4\\x=2,6\end{matrix}\right.\)(vô lí)
Vậy không tồn tại x thỏa mãn đề bài.
3,c,
\(C=\left|x-500\right|+\left|x-300\right|=\left|x-500\right|+\left|300-x\right|\ge\left|x-500+300-x\right|=\left|-200\right|=200.\)
Dấu "=" xảy ra khi và chỉ khi \(\left(x-500\right)\left(300-x\right)\ge0\)
<=>\(\left(x-500\right)\left(x-300\right)\le0\)
<=>\(300\le x\le500\).
1. Ta có: \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}=\dfrac{x+y+z}{a+b+c}=x+y+z\) ( vì \(a+b+c=1\) )
Do đó \(\left(x+y+z\right)^2=\dfrac{x^2}{a^2}=\dfrac{y^2}{b^2}=\dfrac{z^2}{c^2}=\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}=x^2+y^2+z^2\)( vì \(a^2+b^2+c^2=1\) ).
Vậy \(\left(x+y+z\right)^2=x^2+y^2+z^2\)
2. Đặt \(x^2=a\left(a\ge0\right),y^2=b\left(b\ge0\right)\)
Ta có: \(\dfrac{a+b}{10}=\dfrac{a-2b}{7}\) và \(a^2b^2=81\)
\(\dfrac{a+b}{10}=\dfrac{a-2b}{7}=\dfrac{\left(a+b\right)-\left(a-2b\right)}{10-7}=\dfrac{3b}{3}=b\) __(1)__
\(\dfrac{a+b}{10}=\dfrac{a-2b}{7}=\dfrac{2a+2b}{20}=\dfrac{\left(2a+2b\right)+\left(a-2b\right)}{20+7}=\dfrac{3a}{27}=\dfrac{a}{9}\)__(2)__
Từ (1) và (2) suy ra \(\dfrac{a}{9}=b\Rightarrow a=9b\)
Do \(a^2b^2=81\) nên \(\left(9b\right)^2.b^2=81\Rightarrow81b^4=81\Rightarrow b^4=1\Rightarrow b=1\) ( vì \(b\ge0\) )
Suy ra: a = 9.1 = 9
Ta có: \(x^2=9\) và \(y^2=1\). Suy ra: \(x=\pm3,y=\pm1\)
phần A, B bạn làm như bạn nguyễn quang trung còn C,D làm theo mình:
\(C=\frac{2017}{2018}-\left|x-\frac{3}{5}\right|\)
vì \(\left|x-\frac{3}{5}\right|\ge0\forall x\)
nên \(\frac{2017}{2018}-\left|x-\frac{3}{5}\right|\le\frac{2017}{2018}\forall x\)
vậy \(MaxC=\frac{2017}{2018}\Leftrightarrow x=\frac{3}{5}\)
\(D=\left|x-2\right|+\left|y+1\right|+3\)
\(\left|x-2\right|\ge0;\left|y+1\right|\ge0\forall x\)
nên \(\left|x-2\right|+\left|y+1\right|+3\ge3\forall x\)
vậy \(MinA=3\Leftrightarrow x=2;y=-1\)
a ) Ta có : A = \(\left|x+\frac{1}{2}\right|\ge0\forall x\)
Vậy Amin = 0 , khi x = \(-\frac{1}{2}\)
b) \(B=\left|\frac{3}{7}-x\right|+\frac{1}{9}\)
Mà : \(\left|\frac{3}{7}-x\right|\ge0\forall x\)
Nên : \(B=\left|\frac{3}{7}-x\right|+\frac{1}{9}\ge\frac{1}{9}\forall x\)
Vậy Bmin = \(\frac{1}{9}\) kh x = \(\frac{3}{7}\)
a) \(3^{500}\) và \(7^{300}\)
Ta có:
\(3^{500}=\left(3^5\right)^{100}=243^{100}.\)
\(7^{300}=\left(7^3\right)^{100}=343^{100}.\)
Vì \(243< 343\) nên \(243^{100}< 343^{100}.\)
\(\Rightarrow3^{500}< 7^{300}.\)
Chúc bạn học tốt!
a) Ta có : \(3^{500}=3^{5.100}=\left(3^5\right)^{100}=243^{100}\)
\(7^{300}=7^{3.100}=\left(7^3\right)^{100}=343^{100}\)
Mà 243 < 343
=> \(243^{100}< 343^{100}\) hay \(3^{500}< 7^{300}\)
Vậy \(3^{500}< 7^{300}\)