\(3^{30}và5^{20}\)

b) tính: A=\(\frac{16^3.3...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 6 2015

a) 330   và   520

330 = (33)10 = 2710

520 = (52)10 = 2510

=> 2710 > 2510

hay 330   >   520

 

16 tháng 1 2018

mình mới học lớp 4 nên ko giải được

21 tháng 10 2016

a)Ta có:\(3^{30}=\left(3^3\right)^{10}=27^{10}\)

\(5^{20}=\left(5^2\right)^{10}=25^{10}\)

\(27^{10}>25^{10}\Rightarrow3^{30}>5^{20}\)

21 tháng 10 2016
3\(^{30}\)5\(^{20}\)
\(3^{30}=3^{3.10}=\left(3^{ }3\right)^{10}=27^{10}\)
\(5^{20}=5^{2.10}=\left(5^2\right)^{10}=25^{10}\)

Do 27>25 nên \(27^{10}>25^{10}\)\(hay\) \(3^{30}>5^{20}\)

còn câu b thì mk chưa tính ra

5 tháng 2 2016

b) 520 > 313

520>313

duyệt đi

14 tháng 8 2018

a)51/220                   

14 tháng 8 2018

a )( 2/5+2/9-2/11)/(8/5+8/9-8/11)=2*(1/5+1/9-1/11)/8*(1/5+1/9-1/11)=2/8=1/4

20 tháng 6 2015

\(\frac{16^3.3^{10}+120.6^9}{4^6.3^{12}+6^{11}}=\frac{2^{12}.3^{10}+2^3.3.5.2^9.3^9}{2^{12}.3^{12}+3^{11}.2^{11}}=\frac{2^{12}.3^{10}+2^{12}.3^{10}.5}{2^{11}.3^{11}\left(2.3+1\right)}=\frac{2^{12}.3^{10}.\left(1+5\right)}{2^{11}.3^{11}\left(2.3+1\right)}=\frac{2.6}{3.7}=\frac{12}{21}=\frac{4}{7}\)

7 tháng 1 2017

\(\frac{16^3.3^{10}+120.6^9}{4^6.3^{12}+6^{11}}=\frac{4}{7}\)

AH
Akai Haruma
Giáo viên
16 tháng 7 2024

Lời giải:

Gọi biểu thức là $A$.

\(A=\frac{(2^4)^3.3^{10}+2^3.3.5.2^9.3^9}{2^{12}.3^{12}+2^{11}.3^{11}}\\ =\frac{2^{12}.3^{10}+2^{12}.3^{10}.5}{2^{11}.3^{11}(2.3+1)}\\ =\frac{2^{12}.3^{10}(1+5)}{7.2^{11}.3^{11}}=\frac{2^{12}.3^{10}.2.3}{7.2^{11}.3^{11}}\\ =\frac{2^{13}.3^{11}}{7.2^{11}.3^{11}}=\frac{2^2}{7}=\frac{4}{7}\)

6 tháng 2 2016

\(\frac{16^3.3^{10}+120.6^9}{4^6.3^{12}+6^{11}}=\frac{2^{12}.3^{10}+2^3.3.5.2^9.3^9}{2^{12}.3^{12}+3^{11}.2^{11}}=\frac{2^{12}.3^{10}.\left(1+5\right)}{2^{11}.3^{11}\left(2.3+1\right)}=\frac{2.6}{3.7}=\frac{12}{21}=\frac{4}{7}\)

6 tháng 2 2016

=\(\frac{2^{13}\cdot3^{10}+2^3\cdot3\cdot5\cdot2^9\cdot3^9}{2^{12}\cdot3^{12}+2^{11}\cdot3^{11}}\)

=\(\frac{2^{12}\cdot3^{10}\cdot\left(1+2\cdot5\right)}{2^{11}\cdot3^{11}\cdot\left(2\cdot3+1\right)}\)

=\(\frac{2\cdot11}{3\cdot7}\)

duyệt nha các bn

=\(\frac{22}{21}\)

24 tháng 10 2019

A=\(\frac{16^3.3^{10}+120.6^9}{4^6.3^{12}+6^{11}}=\frac{\left(2^4\right)^3.3^{10}+2^3.3.5.2^9.3^9}{\left(2^2\right)^6.3^{12}+2^{11}.3^{11}}\)

\(=\frac{2^{12}.3^{10}+2^{12}.3^{10}.5}{2^{12}.3^{12}+2^{11}.3^{11}}\)

\(=\frac{2^{12}.3^{10}.\left(1+5\right)}{2^{11}.3^{11}.\left(2.3+1\right)}\)

\(=\frac{2.6}{3.7}\)\(=\frac{4}{7}\)