Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{2^2}{1.3}+\dfrac{3^2}{2.4}+\dfrac{4^2}{3.5}+\dfrac{5^2}{4.6}+\dfrac{6^2}{5.7}\)
\(A=\dfrac{2.2.3.3.4.4.5.5.6.6}{1.3.2.4.3.5.4.6.5.7}\)
\(A=\dfrac{2.3.4.5.6}{1.2.3.4.5}.\dfrac{2.3.4.5.6}{3.4.5.6.7}\)
\(A=\dfrac{6}{1}.\dfrac{2}{7}=\dfrac{12}{7}\)
\(B=\left(1+\dfrac{1}{1.3}\right)\left(1+\dfrac{1}{2.4}\right)\left(1+\dfrac{1}{3.5}\right)\left(1+\dfrac{1}{9.11}\right)\)
\(B=\dfrac{4}{3}.\dfrac{9}{8}.\dfrac{16}{15}.\dfrac{100}{99}\)
\(B=\dfrac{4.9.16.100}{3.8.15.99}\)
\(B=\dfrac{2.2.3.3.4.4.10.10}{1.3.2.4.3.5.9.11}\)
\(B=\dfrac{2.3.4.10}{1.2.3.9}.\dfrac{2.3.4.10}{3.4.5.11}\)
\(B=10.\dfrac{2}{11}=\dfrac{20}{11}\)
A=2.(1/1.3 + 1/3.5 + 1/5.7 +.......+1/99.101)
=2.(1/1 + 1/3 + 1/5 + 1/5 + 1/7 +...+1/99 + 1/101)
=2.(1-1/101)
=2.(101/101-1/101)
=2.100/101
200/101
B=2.(1/1.3+1/3.5+1/3.1+....+1/99.101)
=2.(1/1+1/3+1/3+1/5+1/3+1/7+....+1/99+1/101)
=2.(1/1+1/101)
=2.(101/101+1/101)
=2.102/101
=204/101
a) goi ƯCLN(n,n+1) là d
ta co : n ⋮ d ; n+1 ⋮d (1)
⇒ (n+1)-n ⋮ d
⇒1 ⋮ d (2)
Từ (1) và (2) ⇒ d = 1 hoac -1
Vậy \(\dfrac{n}{n+1}\) là phân số tối giản.
b) goi UCLN (n+1,2n+3)la d
=>(2n+3) - (n+1)⋮d
=>(2n+3) - [ 2(n+1)] ⋮ d
=>(2n+3)-(2n+2)⋮d
=>2n+3-2n-2 ⋮ d
=>1 ⋮ d => d=1
vay \(\dfrac{n+1}{2n+3}\) là phân số tối giản.
\(A=\dfrac{12n+1}{30n+2}\)
Gọi \(d\)là \(UCLN\left(12n+1;30n+2\right)\)
\(\left\{{}\begin{matrix}12n+1⋮d\\30n+2⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}60n+5⋮d\\60n+4⋮d\end{matrix}\right.\)
\(\Rightarrow\left(60n+5\right)-\left(60n+4\right)⋮d\)
\(1⋮d\Rightarrow d=1\)
Vậy phân số trên tối giản
b tương tự
1,Gọi a là ƯCLN(12n+1;30n+2).Nên ta có:
12n+1 chia hết cho d và 30n+2 chia hết cho d
<=>5.(12n+1) chia hết cho d và 2.(30n+2) chia hết cho d
<=>60n+5 chia hết cho d và 60n+4 chia hết cho d
=>(60n+5)-(60n+4) chia hết cho d
=>1 chia hết cho d =>d = 1
Vậy d=1 =>\(\dfrac{12n+1}{30n+2}\) là phân số tối giảm (đpcm )
Trả lời
a)\(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...\dfrac{2}{99.101}\)
=\(2.\left(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{99.101}\right)\)
=\(2.\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)
= \(2.\left(\dfrac{1}{1}-\dfrac{1}{101}\right)\)
=\(2.\dfrac{100}{101}\)
=\(\dfrac{200}{101}\)
a/ Goi d la uoc chung lon nhat cua tu va mau
Ta co : 16n+5⋮d va 6n+2⋮d => 48n+15⋮d va 48n+16⋮d
=>1⋮d=>dpcm
Cau b tuong tu
a, Gọi d là ước chung của 21n + 4 và 14n + 3 \(\left(d\in Z,d\ne0\right)\)
\(\Rightarrow\left\{{}\begin{matrix}21n+4⋮d\\14n+3⋮d\end{matrix}\right.\)
+) Vì : \(21n+4⋮d\Rightarrow2\left(21n+4\right)⋮d\Rightarrow42n+8⋮d\)
+) Vì : \(14n+3⋮d\Rightarrow3\left(14n+3\right)⋮d\Rightarrow42n+9⋮d\)
\(\Rightarrow\left(42n+9\right)-\left(42n+8\right)⋮d\)
\(\Rightarrow42n+9-48n-8⋮d\Rightarrow1⋮d\)
\(\Rightarrow d\in\left\{1;-1\right\}\) => \(\dfrac{21n+4}{14n+3}\) là phân số tối giản
b, tương tự
c, Gọi d là ước chung của 2n + 3 và n2 + 3n + 2 \(\left(d\in Z,d\ne0\right)\)
\(\Rightarrow\left\{{}\begin{matrix}2n+3⋮d\\n^2+3n+2⋮d\end{matrix}\right.\)
+) Vì \(2n+3⋮d\Rightarrow n\left(2n+3\right)⋮d\Rightarrow2n^2+3n⋮d\)
+) Vì : \(n^2+3n+2⋮d\Rightarrow2\left(n^2+3n+2\right)⋮d\Rightarrow2n^2+6n+4⋮d\)
Mà : \(2n^2+3n⋮d\)
\(\Rightarrow\left(2n^2+6n+4\right)-\left(2n^2+3n\right)⋮d\)
\(\Rightarrow2n^2+6n+4-2n^2-3n⋮d\Rightarrow3n+4⋮d\)
\(\Rightarrow2\left(3n+4\right)⋮d\Rightarrow6n+8⋮d\)
Vì : \(2n+3⋮d\Rightarrow3\left(2n+3\right)⋮d\Rightarrow6n+9⋮d\)
\(\Rightarrow\left(6n+9\right)-\left(6n+8\right)⋮d\)
\(\Rightarrow6n+9-6n-8⋮d\Rightarrow1⋮d\)
\(\Rightarrow d\in\left\{-1;1\right\}\Rightarrow\dfrac{2n+3}{n^2+3n+2}\) là phân số tối giản
d, tương tự câu c
Mình làm 1 câu thôi các câu sau bạn làm theo mẫu nhé
Gọi d là UCLN(21n+4;14n+3)
\(\Leftrightarrow21n+4⋮d\Rightarrow2\left(21n+4\right)⋮d\Rightarrow42n+8⋮d\)
\(\Leftrightarrow14n+3⋮d\Rightarrow3\left(14n+3\right)⋮d\Rightarrow42n+9⋮d\)
Vì
\(42n+8;42n+9⋮d\)
\(\Leftrightarrow\left(42n+9\right)-\left(42n+8\right)⋮d\)
\(\Leftrightarrow1⋮d\)
\(\Leftrightarrow\dfrac{21n+4}{14n+3}\)tối giản với mọi n
a) S=\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{2017.2019}\)
2S=\(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{2017.2019}\)
2S=\(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2017}-\dfrac{1}{2019}\)
2S=\(1-\dfrac{1}{2019}\)
2S=\(\dfrac{2018}{2019}\)
S\(\dfrac{1009}{2019}\)
b) Gọi ƯCLN(14n+3,21n+5) là d
14n+3⋮d ⇒42n+9⋮d
21n+5⋮d ⇒42n+10⋮d
(42n+10)-(42n+9)⋮d
1⋮d ⇒ƯCLN(14n+3,21n+5)=1
Vậy \(\dfrac{14n+3}{21n+5}\) là Ps tối giản